1887

Abstract

ABSTRACT

The distribution of diamino acids in cell walls of bacterial species bears some relation to taxonomy. The most widely distributed diamino acid is -diaminopimelic acid which is present in probably all Gram-negative species and in numerous other genera. L-lysine, also fairly common, is present in most Gram-positive cocci and in certain other species. Less frequent are DD or LL-diaminopimelic, β-OH - diaminopimelic, D or L ornithine, D or L diaminobutyric. The positions of these bifunctional amino acids in mucopep-tides (glycopeptides), the cross linked polymers of the walls, are described. Mucopeptides are divided into two types according to the site of termination of the cross-link from the D-alanine of an adjacent peptide chain. In type D, the site is the diamino acid which is located in the main peptide chain; in type G (less common) the site is the D-glutamic acid, and the diamino acid is in the cross link. Other differentiating features of types D and G include the optical configuration of the diamino acid, and the nature of the amino acid linking the peptide chain to the hexosamine backbone.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-20-4-425
1970-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/20/4/ijs-20-4-425.html?itemId=/content/journal/ijsem/10.1099/00207713-20-4-425&mimeType=html&fmt=ahah

References

  1. Allsop J., Work E. 1964; Biochem. J.. 87:512
    [Google Scholar]
  2. Antia M., Hoare D. S., Work E. 1957; Biochem. J,. 65:448
    [Google Scholar]
  3. Arimara K., Nakamura T., Tamura G. 1968; Agr. Biol. Chem.. 32:530
    [Google Scholar]
  4. Becker H., Lechevalier M. P., Lechevalier H. A. 1965; Appl. Microbiol.. 13:236
    [Google Scholar]
  5. Bricas E., Ghuysen J. M., Dezélée P. 1967; Biochemistry. 6:2598.
    [Google Scholar]
  6. Cummins C. S. 1962; J. Gen. Microbiol.. 28:35
    [Google Scholar]
  7. Cummins C. S. 1965; Nature. London: 206:1272
    [Google Scholar]
  8. Cummins C. S., Harris H. 1956; J. Gen. Microbiol.. 14:583
    [Google Scholar]
  9. Cummins C. S., Harris H. 1958; J. Gen. Microbiol.. 18:173
    [Google Scholar]
  10. Dewey D. L., Hoare D. S., Work E. 1954; Biochem. J.. 58:523
    [Google Scholar]
  11. Diringer H., Jusic D. 1966; Z. Naturforsch. . 21b:603.
    [Google Scholar]
  12. Duc-Nguyen H., Weed L. L. 1964; J. Biol. Chem.. 239:3372
    [Google Scholar]
  13. Ghuysen J. M. 1968; Bact. Rev.. 32:425
    [Google Scholar]
  14. Guinand M., Ghuysen, J. M., Schleifer, K. H., Kandler O. 1969; Biochemistry. 8:200
    [Google Scholar]
  15. Heijenoort J. van, Elbas L., Dezélée P., Petit J. F., Bricas E., Ghuysen J. M. 1969; Biochemistry. 8:207
    [Google Scholar]
  16. Hoare D. S., Work E. 1955; Biochem. J.. 61:562
    [Google Scholar]
  17. Hoare D. S., Work E. 1957; Biochem. J.. 65:441
    [Google Scholar]
  18. Jusic D, C. Roy, Watson R. W. 1964; Canad. J. Biochem.. 42:1553
    [Google Scholar]
  19. Kandler O. 1967; Ztbl. Bakt. Abt. Grig.. 205:197
    [Google Scholar]
  20. Larsen H. 1967 Advances in Microbial Physiology, 1:97. Edit. A. H. Rose and J. F. Wilkinson, London.: Academic Press.;
  21. Lechevalier H. A. 1970 This symposium.
  22. Martin H. H. 1966; Ann. Rev. Biochem.. 35:457
    [Google Scholar]
  23. Matsuda T., Kotani S., Kato E. 1968; Biken J.. 11:111–127.
    [Google Scholar]
  24. Meadow P., Work E. 1959; Biochem. J.. 72:400
    [Google Scholar]
  25. Miller I., Plapp R., Kandler O. 1968; Z. Naturforsch.. 23(b):217.
    [Google Scholar]
  26. Park J. T., Strominger J. L. 1957; Science. 125:99
    [Google Scholar]
  27. Perkins H. R. 1965; Nature. London: 208:872
    [Google Scholar]
  28. Perkins H. R. 1967; Biochem. J.. 102:29C.
    [Google Scholar]
  29. Perkins H. R. 1968; Biochem. J.. 110:47P.
    [Google Scholar]
  30. Perkins H. R., Cummins C. S. 1964; Nature. London: 201:1105
    [Google Scholar]
  31. Plapp R., Kandler O. 1967; Biochem. Biophys. res. com.. 28:141
    [Google Scholar]
  32. Rhuland L. E., Work, E., Denman R. F., Hoare D. S. 1955; J. Amer. Chem. Soc.. 77:4844
    [Google Scholar]
  33. Salton M. R. J. 1953; Biochim. Biophys. Acta. 10:512
    [Google Scholar]
  34. Salton M. R. J. 1957; Nature. London: 180:338
    [Google Scholar]
  35. Schleifer K. H., Kandler O. 1967a.; Biochem. Biophys. res. Com.. 28:156
    [Google Scholar]
  36. Schleifer K. H., Kandler O. 1967b.; Archiv. fur Microbiol.. 57:335
    [Google Scholar]
  37. Schleifer K. H., Plapp R., Kandler O. 1968a. F. E. B. S. Letters 1:287
  38. Schleifer K. H., Plapp R., Kandler O. 1968b.; Biochim. Biophys. Acta. 154:573
    [Google Scholar]
  39. Strominger J. L., Izaki, K., Matsuhashi M., Tipper D. J. 1967; Fed. Proc.. 26:9
    [Google Scholar]
  40. Szanisklo P. J., Gooder H. 1967; J. Bact.. 94:2037
    [Google Scholar]
  41. Tipper D. J. (1970). This symposium.
  42. Veerkamp J. H., Lambert R., Saito Y. 1965; Arch. Biochem. Biophys.. 112:120
    [Google Scholar]
  43. Weiss N., Plapp R., Kandler O. 1967; Archiv. fur Mikrobiol.. 58:313
    [Google Scholar]
  44. White P. J., Lejeune B., Work E. 1969; Biochem. J.. 113:589
    [Google Scholar]
  45. Work E. 1951; Biochem. J.. 49:17
    [Google Scholar]
  46. Work E. 1957; Nature. London: 179:841
    [Google Scholar]
  47. Work E. 1964; Nature. London: 201:1107
    [Google Scholar]
  48. Work E., Dewey D. L. 1953; J. Gen. Microbiol.. 9:394
    [Google Scholar]
  49. Work E., Griffiths H. 1968; J. Bact.. 95:641
    [Google Scholar]
  50. Yamaguchi T. 1965; J. Bact.. 89:444
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-20-4-425
Loading
/content/journal/ijsem/10.1099/00207713-20-4-425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error