1887

Abstract

Classification of the microbacteria in a separate genus, Orla-Jensen, has been rejected by some authors. In this study three strains of Orla-Jensen, the type species of the genus, one strain of Orla-Jensen, and two strains of McLean and Sulzbacher were examined with the hope that the somewhat precarious taxonomic position of these species might be clarified. Included in this examination were: The determination of deoxyribonucleic acid (DNA) base composition by the thermal denaturation technique, the development of protein and esterase profiles by polyacrylamide gel electrophoresis, and selected enzyme assays associated with the Embden-Meyerhof, hexosemono-phosphate, and tricarboxylic acid pathways. The DNA base ratio studies showed to have a per cent guanine plus cytosine content of 36 compared with 58 for and 64 for The enzyme assays also indicated heterogeneity. All possessed enzymes associated with the Embden-Meyerhof and the hexosemonophosphate pathways, but alone failed to yield enzymatic evidence for an operational tricarboxylic acid cycle. Also, only showed evidence of a glyoxylate shunt. Protein profiles and esterase patterns were also sufficiently different to suggest a separation of from and These studies furnish additional evidence that be placed in the genus Lehmann and Neumann 1896. is an unusual organism which does not appear to be assignable to any of the presently recognized families of bacteria. The placement of in the genus Lehmann and Neumann 1896 would render Orla-Jensen 1919 a later, subjective synonym of does possess characteristics not unlike those of the plant pathogenic corynebacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-22-2-65
1972-04-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/22/2/ijs-22-2-65.html?itemId=/content/journal/ijsem/10.1099/00207713-22-2-65&mimeType=html&fmt=ahah

References

  1. Allen S. L. 1961; Genetic control of the esterases in the protozoan Tetrahymena pyriformis. Ann. N. Y. Acad. Sci. 94:753–773
    [Google Scholar]
  2. Anfinsen C. B. 1955 Aconitase from pig heart muscle. 695–698 Colowick S. P., Kaplan N. O.ed Methods in enzymology 1 Academic Press Inc.; New York:
    [Google Scholar]
  3. Breed R. S., Murray E. G. D., Smith N. T. 1957 Bergey’s manual of determinative bacterology. , 7th. Williams and Wilkins; Baltimore, Md:
    [Google Scholar]
  4. Collins-Thompson D. L., Sdrhaug T., Witter L. D., Ordal Z. J. 1971; Glycerol ester hydrolase activity of Microbacterium thermosphactum. Appl. Microbiol. 21:9–12
    [Google Scholar]
  5. Davidson C. M., Hartree E. F. 1968; Cytochrome as a guide to classifying bacteria: taxonomy of Microbacterium thermosphactum. Nature (London) 220:502–504
    [Google Scholar]
  6. Davidson C. M., Mobbs P., Stubbs J. M. 1968; Some morphological and physiological properties of Microbacterium thermosphactum. J. Appl. Bacteriol. 31:551–559
    [Google Scholar]
  7. Davis G. H. G., Fomin L., Wilson E., Newton K. G. 1969; Numerical taxonomy of Listeria, streptococci and possibly related bacteria. J. Gen. Microbiol. 57:333–348
    [Google Scholar]
  8. Davis G. H. G., Newton K. G. 1969; Numerical taxonomy of some coryneform bacteria. J. Gen. Microbiol. 56:195–214
    [Google Scholar]
  9. Doetsch R. N., Pelczar M. J. Jr. 1948; The microbacteria. I. Morphological and physiological characteristics. J. Bacteriol. 56:37–49
    [Google Scholar]
  10. Hill L. R. 1968 The determination of deoxyribonucleic acid base composition and its application to bacterial taxonomy. 177–186 Gibbs B. M., Shapton D. A.ed Identification methods for microbiologists, series 2B Academic Press Inc.; New York:
    [Google Scholar]
  11. Hill R. L., Bradshaw R. A. 1969 Fumarase. 91–99 Lowenstein J. M.ed Methods in enzymology 13 Academic Press Inc.; New York:
    [Google Scholar]
  12. Hunter R. L., Markert C. L. 1957; Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125:1294–1295
    [Google Scholar]
  13. Jensen H. L. 1932; Contributions to our knowledge of the Actinomycetales. IV. The identity of certain species of Mycobacterium and froactinomyces. Proc. Linnean Soc. N. S. W. 57:364–367
    [Google Scholar]
  14. Jensen H. L. 1934; Studies on saprophytic mycobacteria and corynebacteria. Proc. Linnean Soc. N. S. W. 59:19–61
    [Google Scholar]
  15. Keddie R. M., Leask G. S. B., Grainzer J. M. 1966; A comparison of coryneform bacteria from soil and herbage: cell wall composition and nutrition. J. Appl. Bacteriol. 29:17A3
    [Google Scholar]
  16. Kitto G. B. 1969 Intra- and extra-mitochondrial malate dehydrogenase from chicken and tuna heart. 106–116 Lowenstein J. M.ed Methods in enzymology 13 Academic Press Inc.; New York:
    [Google Scholar]
  17. Kornberg A. 1955 Lactate dehydrogenase of muscle. 441–443 Colowick S. P., Kaplan N. O.ed Methods in enzymology 1 Academic Press Inc.; New York:
    [Google Scholar]
  18. Kornberg M. L. 1966 Anaplerotic sequences and their role in metabolism. Campbell P. N., Greville G. D.ed Essays in biochemistry 2 Academic Press Inc.; New York:
    [Google Scholar]
  19. Khouw B. T., McCurdy M. D. 1969; Tricarboxylic acid cycle enzymes and morphogenesis in Blastocladiella emersonii. J. Bacteriol. 99:197–205
    [Google Scholar]
  20. Lee C. K., Ordal Z. J. 1967; Regulation effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J. Bacteriol. 94:530–536
    [Google Scholar]
  21. McFadden B. A. 1969 Isocitrate lyase. 163–170 Lowenstein J. M.ed Methods in enzymology 13 Academic Press Inc.; New York:
    [Google Scholar]
  22. McLean R. A., Sulzbacher W. L. 1953; Microbacterium thermosphactum, spec nov; a nonheat resistent bacterium from fresh pork sausage. J. Bacteriol. 65:428–433
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  24. Norris J. R. 1968 The application of gel electrophoresis to the classification of micro-organisms. 49–56 Chemotaxonomy and serotaxonomy Academic Press Inc.; New York:
    [Google Scholar]
  25. O’Brian R. W., Stern J. R. 1969; Requirement for sodium in the anaerobic growth of Aerobacter aerogenes on citrate. J. Bacteriol. 98:388–393
    [Google Scholar]
  26. Orla-Jensen S. 1919 The lactic acid bacteria. Copenhagen, Denmark:
    [Google Scholar]
  27. Orla-Jensen S. 1943 Die echten Milchasaure-bakterien. Munksgaard; Copenhagen:
    [Google Scholar]
  28. Ramaley R. F., Bridger W. A., Moyer R. W., Boyer P. D. 1967; The preparation properties and reactions of succinyl coenzyme- a synthetase and its phosphorylated form. J. Biol. Chern. 242:4287–4298
    [Google Scholar]
  29. Reed L. J., Mukerjee B. B. 1969 Ketoglutarate dehydrogenase complex in Escherichia coli. 55–61 Lowenstein J. M.ed Methods in enzymology 13 Academic Press Inc.; New York:
    [Google Scholar]
  30. Robinson K. 1966; Some observations on the taxonomy of the genus Microbacterium. II. Cell wall analysis, gel electrophoresis and serology. J. Appl. Bacteriol. 29:616–624
    [Google Scholar]
  31. Robinson M. W., Hogden G. G. 1940; The biuret reaction in the determination of serum proteins. I. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. J. Biol. Chern. 135:707–725
    [Google Scholar]
  32. Schleifer K. H. 1970; Die Mureintypen in der Gattung Microbacterium. Arch. Mikrobiol. 71:271–282
    [Google Scholar]
  33. Shaw N., Stead D. 1970; A study of the lipid composition of Microbacterium thermosphactum as a guide to its taxonomy. J. Appl. Bacteriol. 33:470473
    [Google Scholar]
  34. Speck M. L. 1943; The genus Microbacterium. J. Dairy Sci. 26:533–543
    [Google Scholar]
  35. Vandemark P. J., Wood W. A. 1956; The pathways of glucose dissimilation by Microbacterium lacticum. J. Bacteriol. 71:385–392
    [Google Scholar]
  36. von Tigerstrom M., Campbell J. J. R. 1966; The accumulation of ketoglutarate by suspensions of Pseudomonas aeruginosa. Can. J. Microbiol. 12:1005–1013
    [Google Scholar]
  37. Weitzman P. D. J. 1969 Citrate synthetase from E. coli. 22–26 Lowenstein J. M.ed Methods in enzymology 13 Academic Press Inc.; New York:
    [Google Scholar]
  38. Wittern A. 1933; Beitrage zur Kenntnis der “Mikrobakterien.” Orla-Jensen. Zentralbl. Bakteriol. Parasitenk. Infektionsk. Hyg. Abt. 2 87:412–446
    [Google Scholar]
  39. Yamada K., Komagata K. 1970; Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. J. Gen. Appl. Microbiol. 16:215–224
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-22-2-65
Loading
/content/journal/ijsem/10.1099/00207713-22-2-65
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error