1887

Abstract

Two hundred ninety strains of , each belonging to , or , or to one of three unnamed taxa designated “ subsp. a,” “3452-A,” and “T4-1,” were used to compare the patterns of 34 phenotypic traits with deoxyribonucleic acid (DNA) homology groupings. The responses for all but 13 of the traits were very similar for all of the DNA homology groups. The responses for the 13 traits (the production of indole, catalase, and hydrogen, and acid production from arabinose, cellobiose, melibiose, melezitose, raffinose, rhamnose, ribose, salicin, sucrose, and trehalose) varied between the various homology groups. Similarity coefficients, for which all of the strains were compared with the DNA reference strains, were calculated. Similarity coefficient averages of strains within a given DNA homology group with the DNA reference strains of that group ranged form 83 to 94%. Organisms having about 60 to 65% DNA homology to each other were in most cases also phenotypically very similar. In a couple of instances, however, homology groups with strains having 72 to 95% intrastrain homology were quite variable with respect to certain phenotypic traits. There was no general pattern between levels of intergroup homologies and phenotypic properties. For example, and the “subsp. a” homology groups, having about 50% intergroup homology, had average intergroup phenotypic similarity values of 65 and 69%, whereas and B. thetaiotaomicron homology groups, having only about 35% intergroup DNA homology, had intergroup similarity values that ranged from 86 to 93%. Similarity coefficients between homology groups having low levels of DNA homology ranged from 38 to 78%. Response probability values for the phenotypic traits were estimated for strains belonging to each of the DNA homology groups. The probability values obtained with 20 to 40 strains were not altered significantly by including more strains. A test identification matrix was constructed using the probability values of the 13 phenotypic traits listed above. On the basis of these traits, 93% of the strains could be assigned to the correct homology group if groups having 60% or greater intragroup homology were considered to be phenotypically the same.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-28-2-257
1978-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/28/2/ijs-28-2-257.html?itemId=/content/journal/ijsem/10.1099/00207713-28-2-257&mimeType=html&fmt=ahah

References

  1. Barr A. J., Goodnight J. H. 1972 A users guide to the Statistical Analysis System. Sparks Press; Raleigh, N.C:
    [Google Scholar]
  2. Bascomb S., Lapage S. P., Curtis M. A., Willcox W. R. 1973; Identification of bacteria by computer: identification of reference strains. J. Gen. Microbiol. 77:291–315
    [Google Scholar]
  3. Bates F., Douglas M. L. 1975 Programming language one. , 3rd. Prentice Hall Inc.; Englewood Cliffs, N.J:
    [Google Scholar]
  4. Beerens H., Wattre P., Shinjo T., Romond C. 1971; Premiers resultats d’un essai de classification serologique de 131 souches de bacteroides du groupe fragilis (Eggerthella). Ann. Inst. Pasteur (Paris) 121:187–198
    [Google Scholar]
  5. Brandis H., Voigt W. H., Viebahn A. 1972; Morphological and biological properties of the Bacteroides fragilis bacteriophage 0 Al. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Grig. Reihe A 222:57–63
    [Google Scholar]
  6. Brenner D. J., Fanning G. R., Skerman F. J., Falkow S. 1972; Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 109:953–965
    [Google Scholar]
  7. Cato E. P., Johnson J. L. 1976; Reinstatement of species rank for Bacteroides fragilis, B. ovatus, B. distasonis, B. thetaiotaomicron and B. vulgatus: designation of the neotype strain for Bacteroides fragilis (Veilion and Zuber) Castellani and Chalmers and Bacteroides thetaiotaomicron (Distaso) Castellani and Chalmers. Int. J. Syst. Bacteriol. 26:230–237
    [Google Scholar]
  8. Citarella R. V., Colwell R. R. 1970; Polyphasic taxonomy of the genus Vibrio’, polynucleotide sequence relationships among selected Vibrio species. J. Bacteriol. 104:434–442
    [Google Scholar]
  9. Colwell R. R. 1970; Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J. Bacteriol. 104:410–433
    [Google Scholar]
  10. Dybowski W., Franklin D. A. 1968; Conditional probability and the identification of bacteria: a pilot study. J. Gen. Microbiol. 54:215–229
    [Google Scholar]
  11. Eggerth A. H., Gagnon B. H. 1933; The bacteroides of human feces. J. Bacteriol. 25:389–413
    [Google Scholar]
  12. Friedman R. B., Bruce D., MacLowry J., Brenner V. 1973; Computer-assisted identification of bacteria. J. Clin. Pathol. 60:395–403
    [Google Scholar]
  13. Guiney D. G., Davis C. E. 1975; Isolation of plasmid deoxyribonucleic acid from two strains of Bacteroides. J. Bacteriol. 124:503–510
    [Google Scholar]
  14. Holdeman L. V., Moore W. E. C. 1974 Bacteroides,. 387–389 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  15. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24:260–277
    [Google Scholar]
  16. Holdeman L. V., Moore W. E. C.ed 1975 Anaerobe Laboratory manual. , 3rd. Virginia Polytechnic Institute and State University; Blacksburg, Va:
    [Google Scholar]
  17. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23:308–315
    [Google Scholar]
  18. Johnson J. L. 1978; Taxonomy of the bacteroides. I. Deoxyribonucleic acid homologies among Bacteroides fragilis and other saccharolytic Bacteroides species. Int. J. Syst. Bacteriol. 28:245–256
    [Google Scholar]
  19. Keller R., Traub N. 1974; The characterization of Bacteroides fragilis bacteriophage recovered from animal sera: observations on the nature of Bacteroides phage carrier cultures. J. Gen. Virol. 24:179–189
    [Google Scholar]
  20. Lapage S. P., Bascomb S., Willcox W. R., Curtis M. A. 1973; Identification of bacteria by computer: identification of reference strains. J. Gen. Microbiol. 77:291–315
    [Google Scholar]
  21. Moore W. E. C., Holdeman L. V. 1974; Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27:961–979
    [Google Scholar]
  22. Nacescu N., Brandis H., Werner H. 1972; Isolation of two Bacteroides fragilis phages from sewage and detection of lysogenic B. fragilis strains. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1 Abt. Grig. Reihe A 219:522–529
    [Google Scholar]
  23. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol. 110:1–11
    [Google Scholar]
  24. Prévôt A. R., Vieu J. F., Thouvenot H., Brault G. 1970; Etude de Ristella pseudoinsolita et de ses bactériophages. Essai de lysotypie. Bull. Acad. Nat. Med. (Paris) 154:681–690
    [Google Scholar]
  25. Rypka E. W., Clapper W. E., Bowen I. G., Babb R. 1967; A model for the identification of bacteria. J. Gen. Microbiol. 46:407–424
    [Google Scholar]
  26. Salyers A. A., Vercellotti J. R., West S. E. H., Wilkins T. D. 1977; Fermentation of mucin and plant polysaccharides by strains of Bacteriodes from the human colon. Appl. Environ. Microbiol. 33:319–322
    [Google Scholar]
  27. Sedallian A., Frocrain C., Rouxel A. 1972; Bac- téroïdes du groupe fragilis; identification biocheimique et sérologique. Quest Medical 25:2563–2568
    [Google Scholar]
  28. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  29. Stiffler P. W., Keller R., Traub N. 1974; Isolation and characterization of several cryptic plasmids from clinical isolates of Bacteroides fragilis. J. Infect. Dis. 130:544–548
    [Google Scholar]
  30. Varel V. H., Bryant M. P. 1974; Nutritional features of Bacteroides fragilis subsp. fragilis. Appl. Microbiol. 18:251–257
    [Google Scholar]
  31. Werner H. 1968 Die gramnegativen anaeroben sporenlosen Stäbchen des Menschen. 102–104 VEB Gustav Fischer Verlag; Jena:
    [Google Scholar]
  32. Werner H., Pulverer G. 1971; Häufigkeit und medizinische Bedeutung der eitererregenden Bacteroides- und Sphaerophorus- Arten. Dtsch. Med. Woch- enschr. 96:1–5
    [Google Scholar]
  33. Wilkins T. D., Walker C. B. 1975; Development of a micromethod for identification of anaerobic bacteria. Appl. Microbiol. 30:825–830
    [Google Scholar]
  34. Wilkins T. D., Walker C. B., Moore W. E. C. 1975; Micromethod for identification of anaerobic bacteria: design and operation of apparatus. Appl. Microbiol. 30:831–837
    [Google Scholar]
  35. Willcox W. R., Lapage S. P., Bascomb S., Curtis M. A. 1973; Identification of bacteria by computer: theory and programming. J. Gen. Microbiol. 77:317–330
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-28-2-257
Loading
/content/journal/ijsem/10.1099/00207713-28-2-257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error