1887

Abstract

The genus Kudriavzev has been emended to include all nitrate-negative, multilateral budding yeast species that form unconjugated persistent asci with roughened spheroidal ascospores and have Q-7 ubiquinone in the electron transport system. var. , and var. are assigned to this genus as Kudriavzev, (van der Walt) comb. nov., var. (Phaff et al.) comb. nov., and var. (Phaff et al.) comb. nov., respectively. Additionally, one new species, , is described. The type strain of is NRRL Y-7552 (=CBS 5459). Electron microscopy demonstrated that the ascospore walls of have thick inner and outer layers and that the ascospores of the other species have walls with a thick inner layer and a thin, dense outer layer. With the exception of var. , ascospore surface ornamentation arises from the dense outer layer. Deoxyribonucleic acid reassociation studies and mating tests confirmed the recognition of four species in the genus and showed to be the imperfect state of was identified as the imperfect form of var. and var. showed only 25© deoxyribonucleic acid complementarity, yet intervarietal matings formed viable ascospores. This is the lowest deoxyribonucleic acid relatedness ever shown between strains capable of genetic hybridization, and the implications of this finding are discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-30-2-503
1980-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/30/2/ijs-30-2-503.html?itemId=/content/journal/ijsem/10.1099/00207713-30-2-503&mimeType=html&fmt=ahah

References

  1. Bak A. L., Stenderup A. 1969; Deoxyribonucleic acid homology in yeasts. Genetic relatedness within the genus Candida. J. Gen. Microbiol 59:21–30
    [Google Scholar]
  2. Bemardi G., Faures M., Piperno G., Slonimski P. P. 1970; Mitochondrial DNAs from respiratory-sufficient and cytoplasmic respiratory-deficient mutants of yeast. J. Mol. Biol 48:23–43
    [Google Scholar]
  3. Boidin J., Pignal M. C., Besson M. 1965; Le genre Pichia sensu lato. Quatrieme contribution. Bull. Soc. Mycol. Fr 81:566–606
    [Google Scholar]
  4. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int. J. Syst. Bacteriol 23:298–307
    [Google Scholar]
  5. Dobzhansky T. 1976; Organismic and molecular aspects of species formation. p 95–105 In Ayala F. J. ed Molecular evolution.. Sinauer Associates, Inc; Sunderland, Mass:
    [Google Scholar]
  6. Galau G. A., Chamberlin M. E., Hough B. R., Britten R. J., Davidson E. H. 1976; Evolution of repetitive and nonrepetitive DNA. p 200–224 In Ayala F. J. ed Molecular evolution. Sinauer Associates, Inc; Sunderland, Mass:
    [Google Scholar]
  7. Kreger-van Rij N. J. W. 1970; Debaryomyces Lodder et Kreger-van Rij nom. conserv. p 129–156 In Lodder J. ed The yeasts—a taxonomic study North-Holland Publishing Co; Amsterdam:
    [Google Scholar]
  8. Kreger-van Rij N. J. W. 1970; Pichia Hansen. p 455–554 In Lodder J. ed The yeasts—a taxonomic study North-Holland Publishing Co; Amsterdam:
    [Google Scholar]
  9. Kreger-van-Rij N. J. W., Veenhuis M. 1975; Electron microscopy of ascus formation in the yeast Debaryomyces hansenii. J. Gen. Microbiol 89256–264
    [Google Scholar]
  10. Kreger-van-Rij N. J. W., Veenhuis M. 1976; Ultrastructure of the ascospores of some species of the Torulaspora group. Antonie van Leeuwenhoek J. Microbiol. Serol 42445–455
    [Google Scholar]
  11. Kudriavzev V. I. 1960 Die Systematik der Hefen Akademie-Verlag; Berlin:
    [Google Scholar]
  12. Kurtzman C. P., Baker F. L., Smiley M. J. 1974; Specimen holder to critical-point dry microorganisms for scanning electron microscopy. Appl. Microbiol 28:708–712
    [Google Scholar]
  13. Kurtzman C. P., Kreger-van Rij N. J. W. 1976; Ultrastructure of ascospores from Debaryomyces mel- issophilus, a new taxonomic combination. Mycologia 68:422–425
    [Google Scholar]
  14. Kurtzman C. P., Smiley M. J. 1974; A taxonomic re-evaluation of the round-spored species of Pichia. p 231–232 In Klaushofer H., Sleytr U. B. ed Proceedings of the 4th International Symposium on Yeasts, Vienna, Austria. I. Hochschiilerschaft an der Hochs- chule fur Bodenkultur, Vienna.
    [Google Scholar]
  15. Kurtzman C. P., Smiley M. J. 1976; Heterothallism in Pichia kudriavzevii Pichia terricola. Antonie van Leeuwenhoek J. Microbiol. Serol 42:355–363
    [Google Scholar]
  16. Kurtzman C. P., Smiley M. J. 1979; Taxonomy of Pichia carsonii and its synonyms Pichia vini P. vini var. melibiosi: comparison by DNA reassociation. Mycologia 71:658–662
    [Google Scholar]
  17. Kurtzman C. P., Smiley M. J., Baker F. L. 1975; Scanning electron microscopy of ascospores of Debar-yomyces Saccharomyces. Mycopathol. Mycol. Appl 55:29–34
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  19. Mendonsa-Hagler L. C., Phaff H. J. 1975; Deoxyribonucleic acid base composition and DNA/DNA hybrid formation in psychrophobic and related yeasts. Int. J. Syst. Bacteriol 25:222–229
    [Google Scholar]
  20. Meyer S. A., Anderson K., Brown R. E., Smith M. T., Yarrow D., Mitchell G., Ahearn D. G. 1975; Physiological and DNA characterization of Candida maltosa, a hydrocarbon utilizing yeast. Arch. Microbiol 104:225–231
    [Google Scholar]
  21. Meyer S. A., Brown R. E., Smith M. T. 1977; Species status of Hanseniaspora guilliermondii Pijper. Int. J. Syst. Bacteriol 27:162–164
    [Google Scholar]
  22. Novak E. K., Zsolt J. 1961; A new system proposed for yeasts. Acta Bot. Acad. Sci. Hung 7:93–145
    [Google Scholar]
  23. Phaff H. J., Miller M. W., Miranda M. 1976; Pichia scutulata, a new species from tree exudates. Int. J. Syst. Bacteriol 26:326–331
    [Google Scholar]
  24. Price C. W., Fuson G. B., Phaff H. J. 1978; Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, Pichia. Microbiol. Rev 42:161–193
    [Google Scholar]
  25. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribo-nucleic acid from its buoyant density in CsCl. J. Mol. Biol 4:430–433
    [Google Scholar]
  26. Seidler R. J., Knittel M. D., Brown C. 1975; Potential pathogens in the environment. Cultural re-actions and nucleic acid studies on Klebsiella pneumoniae from chemical and environmental sources. Appl. Microbiol 29:819–825
    [Google Scholar]
  27. Seidler R. J., Mandel M. 1971; Quantitative aspects of deoxyribonucleic acid renaturation: base com-position, state of chromosome replication, and polynu-cleotide homologies. J. Bacteriol 106:608–614
    [Google Scholar]
  28. Szep E., Novak E. K. 1963; A new yeast species: Candida requinyii n. sp. Acta Bot. Acad. Sci. Hung 9:447–453
    [Google Scholar]
  29. Szybalski W. 1968; Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 12B:330–360
    [Google Scholar]
  30. van der Walt J. P. 1957; Three new sporogenous yeasts from soil. Antonie van Leeuwenhoek J. Microbiol. Serol 23:23–29
    [Google Scholar]
  31. van der Walt J. P. 1970; Saccharomyces Meyen emend Reess. p 555–718 In Lodder J. ed The yeasts—a taxonomic study. North-Holland Publishing Co; Amsterdam:
    [Google Scholar]
  32. van Uden N., Buckley H. 1970 Candida Ber-khout. p 893–1087 In Lodder J. ed The yeasts—a taxonomic study. North-Holland Publishing Co; Amsterdam:
    [Google Scholar]
  33. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. J. Mol. Biol 31:349–370
    [Google Scholar]
  34. Wickerham L. J. 1951; Taxonomy of yeasts. U. S. Dept Agric. Tech. Bull 1029:1–56
    [Google Scholar]
  35. Wilson A. C. 1976; Gene regulation in evolution. p 225–234 In Ayala F. J. ed Molecular evolution. Sinauer Associates, Inc; Sunderland, Mass:
    [Google Scholar]
  36. Yamada Y., Arimoto M., Kondo K. 1977; Coenzyme Q system in the classification of some ascosporo- genous yeast genera in the families Saccharomyceta- ceae Spermophthoraceae. Antonie van Leeuwenhoek J. Microbiol. Serol 43:65–71
    [Google Scholar]
  37. Yamada Y., Kondo K. 1972; Taxonomic significance of the coenzyme Q system in yeasts and yeastlike fungi. II. p 781–784 In Terui G. ed Fermentation technology today, Proceedings of the 4th International Fermentation Symposium Society of Fermentation Technology; Osaka, Japan:
    [Google Scholar]
  38. Yamada Y., Nojiri M., Matsuyama M., Kondo K. 1976; Coenzyme Q system in the classification of the ascosporogenous yeast genera Debaryomyces, Saccha, romyces, Kluyveromyces, Endomycopsis. J. Gen. Appl. Microbiol 22:325–339
    [Google Scholar]
  39. Yamada Y., Okada T., Ueshima O., Kondo K. 1973; Coenzyme Q system in the classification of the ascosporogenous yeast genera Hansenula Pichia. J. Gen. Appl. Microbiol 19:189–208
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-30-2-503
Loading
/content/journal/ijsem/10.1099/00207713-30-2-503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error