1887

Abstract

We hybridized 23S 2-C-labeled ribosomal ribonucleic acids (rRNAs) from type strains ATCC 13525, ATCC 15668, NCPPB 325, and NCPPB 528 with deoxyribonucleic acids (DNAs) from 65 strains, 23 strains, and 148 mostly gram-negative strains belonging to 43 genera and 93 species and subspecies including more than 60 type strains. Our findings confirm and extend the findings derived from ribonucleic acid hybridizations by the Berkeley group, but differed in some respects from the groupings of in , 8th ed. The genus Migula 1894, 237 was divided into three large, distinct groups. The rRNA branch contains , and . The rRNA branch contains , and . The third rRNA branch contains , and . Each of these rRNA branches is as heterogeneous as a genus. The and rRNA branches are about as far removed from each other as they are from the genera and and the authentic genus These branches are members of the third rRNA superfamily. The rRNA branch is quite different, as it is a member of the second rRNA superfamily, which also contains , and some other genera. Along with data from rRNA hybridizations involving many different gram-negative taxa, these results show clearly that the three rRNA branches differ at least at the genus level. The genus is separate in its own right. It constitutes a very tight cluster consisting of , and ( covers older species names no longer in use). has rRNA cistrons that are indistinguishable from the rRNA cistrons of the xanthomonads mentioned above. There are a number of misnamed taxa. is a somewhat unusual member of ; likewise, and are not members of the genus , and is definitely not a member of the genus . The exact taxonomic positions of the latter three species are unknown. A quantitative comparison showed that fine differentiation of strains by means of DNA-DNA hybridization under stringent conditions at T (temperature of optimal renaturation) was meaningful only in the top 7 to 8°C T (thermal elution temperature range, 73 to 81°C) of our DNA-rRNA similarity maps and dendrograms (a difference of 1°C in thermal elution temperature from ribosomal DNA similarity corresponded to roughly 14% DNA homology).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-3-487
1983-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/3/ijs-33-3-487.html?itemId=/content/journal/ijsem/10.1099/00207713-33-3-487&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1973; Bacterial cytochromes c and molecular evolution. Syst. Zool 22:554–565
    [Google Scholar]
  2. Aragno M., Schlegel. H. G. 1977; Alcaligenes ruhlandii (Packer and Vishniac) comb, nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. Int. J. Syst. Bacteriol 27:279–281
    [Google Scholar]
  3. Auling G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes, and Paracoccus. Int. J. Syst. Bacteriol 30:123–128
    [Google Scholar]
  4. Ballard R. W., Doudoroff M., Stanier R. Y., Mandel M. 1968; Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesiculare. J. Gen. Microbiol 53:349–361
    [Google Scholar]
  5. Ballard R. W., Palleroni N. J., Doudoroff M., Stanier R. Y., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J. Gen. Microbiol 60:199–214
    [Google Scholar]
  6. Baptist J. N., Shaw C. R., Mandel M. 1969; Zone electrophoresis of enzymes in bacterial taxonomy. J. Bacteriol 99:180–188
    [Google Scholar]
  7. Baumann P., Baumann L., Mandel M. 1971; Taxonomy of marine bacteria: the genus Beneckea. J. Bacteriol 107:268–294
    [Google Scholar]
  8. Burton K. 1956; A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem.J 62:315–323
    [Google Scholar]
  9. Crombach W. H. J. 1972; DNA base composition of soil arthrobacters and the coryneforms from cheese and sea fish. Antonie van Leeuwenhoek J. Microbiol. Serol 38:105–120
    [Google Scholar]
  10. Davis D. H., Stanier R. Y., Doudoroff M., Man-del M. 1970; Taxonomic studies on some Gram negative polarly flagellated “hydrogen” bacteria and related species. Arch. Mikrobiol 70:1–13
    [Google Scholar]
  11. De Lange A., Kerling L. C. P. 1962; Aplanobacterium populi, the cause of bacterial canker of poplar. Tijdschr. Plantenziekten 68:289–291
    [Google Scholar]
  12. De Ley J. 1967; The quick approximation of DNA base composition from absorbancy ratios. Antonie van Leeuwenhoek J. Microbiol. Serol 33:203–208
    [Google Scholar]
  13. De Ley J. 1978; Modern methods in bacterial taxonomy. Evaluation, application, prospects347–357In Proceedings of the 4th International Conference on Plant Pathogenic BacteriaAngers 1: Gibert-Clarey; Tours:
    [Google Scholar]
  14. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  15. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol 41:287–307
    [Google Scholar]
  16. De Ley J., Park I. W., Tytgat R., Van Ermengem J. 1966; DNA homology and taxonomy of Pseudomonas and Xanthomonas . J. Gen. Microbiol 42:43–56
    [Google Scholar]
  17. De Ley J., Segers P., Gillis M. 1978; Intra- and intergeneric similarities of Chromobacterium and Janthin-obacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 28:154–168
    [Google Scholar]
  18. De Ley J., Tytgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol 36:461–474
    [Google Scholar]
  19. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol 29:344–358
    [Google Scholar]
  20. De Smedt J., Bauwens M., Tytgat R., De Ley J. 1980; Intra- and intergeneric similarities of ribosomal ribonucle-ic acid cistrons of free-living nitrogen-fixing bacteria. Int. J. Syst. Baeteriol 30:106–122
    [Google Scholar]
  21. De Smedt J., De Ley J. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Baeteriol 27:222–240
    [Google Scholar]
  22. Doudoroff ML, Palleroni. N. J. 1974; Genus I. Pseudomonas Migula 1894, 237. 217–243 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Dye D. W., Lelliott. R. A. 1974; Genus II. Xanthomonas Dowson 1939,187. 243–249 Buchanan R. E. , Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  24. Erasmus H. D., Mathee F. N., Louw. H. A. 1974; A comparison between plant pathogenic species of Pseudomonas, Xanthomonas and Erwinia with special reference to the bacterium responsible for bacterial blight of vines. Phytophylactica 6:11–18
    [Google Scholar]
  25. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Stahl B. J., Lewis D. A., Chen K. R., Leuhrsen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  26. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Baeteriol 30:7–27
    [Google Scholar]
  27. Gillis M., Ley J. D., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem 12:143–153
    [Google Scholar]
  28. Hayward A. C. 1964; Characteristics of Pseudomonas solanacearum. J. Appl. Baeteriol 27:265–277
    [Google Scholar]
  29. Hendrie M. S., Hodgkiss W., Shewan. J. M. 1970; The identification, taxononly and classification of luminous bacteria. J. Gen. Microbiol 64:151–169
    [Google Scholar]
  30. Hugh R. 1981; Pseudomonas maltophilia sp. nov., nom. rev. Int. J. Syst. Baeteriol 31:195
    [Google Scholar]
  31. Hugh R., Leifson E. 1963; A description of the type strain of Pseudomonas maltophilia. Int. Bull. Baeteriol. Nomencl. Taxon 13:133–138
    [Google Scholar]
  32. Iizuka H., Komagata K. 1963; Pseudomonas isolated from rice, with special reference to the taxonomic study of chromogenic group of genus Pseudomonas. J. Agric. Chem. Soc. Jpn 37:71–76
    [Google Scholar]
  33. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Baeteriol 32:136–139
    [Google Scholar]
  34. Kirby K. S. 1957; A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem. J 66:495–504
    [Google Scholar]
  35. Kirby K. S., Fox-Carter E., Guest M. 1967; Isolation of deoxyribonucleic acid and ribosomal ribonucleic acid from bacteria. Biochem. J 104:258–262
    [Google Scholar]
  36. Komagata K., Yabuuchi K., Tamagawa Y., Ohyama A. 1974; Pseudomonas melanogena Iizuka and Komagata 1963, a later subjective synonym of Pseudomonas maltophilia Hugh and Ryschenkow 1960. Int. J. Syst. Baeteriol 24:242–247
    [Google Scholar]
  37. Lysenko O. 1961; Pseudomonas—an attempt at a general classification. J. Gen. Microbiol 25:379–408
    [Google Scholar]
  38. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol 43:273–292
    [Google Scholar]
  39. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Mol. Biol 5:109–118
    [Google Scholar]
  40. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  41. Meys W. H., Schilperoort. R. A. 1971; Determination of the amount of DNA on nitrocellulose membrane filters. FEBS Lett 12:166–168
    [Google Scholar]
  42. Murata N., Starr M. P. 1973; A concept of the genus Xanthomonas and its species in the light of segmental homology of deoxyribonucleic acids. Phytopathol. Z 77:285–323
    [Google Scholar]
  43. Ouellette C. A., Burris R. H., Wilson. P. W. 1969; Deoxyribonucleic acid base composition of species of Klebsiella, Azotobacter and Bacillus. Antonie van Leeu-wenhoek. J. Microbiol. Serol 35:275–286
    [Google Scholar]
  44. Owen R. J., Lapage. S. P. 1974; A comparison of strains of King’s group lib of Flavobacterium with Flavo bacterium meningosepticum. Antonie van Leeuwenhoek. J. Microbiol. Serol 40:255–264
    [Google Scholar]
  45. Palleroni N. J. 1978; The Pseudomonas group. In Cook J. G. Patterns of progress Meadowfield Press Ltd.; Durham, England:
    [Google Scholar]
  46. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Baeteriol 110:1–11
    [Google Scholar]
  47. Palleroni N. J., Doudoroff M. 1971; Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J. BacteHol 107:690–696
    [Google Scholar]
  48. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Baeteriol 23:333–339
    [Google Scholar]
  49. Panagopoulos C. G. 1969; The disease “Tsilik Marasi” of grapevine. Its description and identification of the causal agent (Xanthomonas ampelina sp. nov.). Ann. Inst. Phytopathol. Benaki N. Ser 9:59–81
    [Google Scholar]
  50. Ralston E., Palleroni N. J., Doudoroff M. 1972; Deoxyribonucleic acid homologies of some so-called “Hydrogenomonas” species. J. Baeteriol 109:465–466
    [Google Scholar]
  51. Ralston-Barett E., Palleroni N. J., Doudoroff M. 1976; Phendtypic characterization and deoxyribonucleic acid homologies of the “Pseudomonas alcaligenes” group. Int. J. Syst. Baeteriol 26:421–426
    [Google Scholar]
  52. Rhodes M. E. 1959; The characterization of Pseudomo-nas fluorescens. J. Gen. Microbiol 21:221–263
    [Google Scholar]
  53. Ridé M. 1958; Sur l’etiologie du chancre suintant du peuplier. C. R. Se. Acad. Sci. Paris 246:2795–2798
    [Google Scholar]
  54. Ridé M., Ridé S. 1978; The causal agent of the bacterial canker of poplar (ex Aplanobacter populi Ridé): Xanthomonas populi or Xanthomonas campestris patho-var populi?. 365–370In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers 1 Gibert-Clarey; Tours:
    [Google Scholar]
  55. Ridé M., Ridé S. 1978; Xanthomonas populi (Ridé) comb. nov. (syn. Aplanobacter populi Ridé), specificite, variability et absence de relations avec Erwinia cancero-gena Ur. Eur. J. For. Pathol 8:310–333
    [Google Scholar]
  56. Sebald M., Veron M. 1963; Teneur en bases de l’ADN et classification des vibrions. Inst. Pasteur Paris 105:897–910
    [Google Scholar]
  57. Skyring G. W., Quadling C., Rouatt. J. A. 1971; Soil bacteria: principal component analysis of physiological descriptions of some named cultures of Agrobacterium, Arthrobacter and Rhizobium. Can. J. Microbiol 17:1299–1311
    [Google Scholar]
  58. Sokal R. R., Sneath P. H. A. 1963; Principles of numerical taxonomy. W. H. Freeman and Co; London:
    [Google Scholar]
  59. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol 43:159–271
    [Google Scholar]
  60. Starr M. P., Mandel M. 1969; DNA base composition and taxonomy of phytopathogenic and other entero-bacteria. J. Gen. Microbiol 56:113–123
    [Google Scholar]
  61. Swings J., Vos P. D., Van Den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int. J. Syst. Bacteriol 33:409–413
    [Google Scholar]
  62. Swings J., Gillis M., Kersters K., De Vos P, Gossele F., De Ley J. 1980; Frateuria, a new genus for “Acetobacter aurantius.”. Int. J. Syst. Bacteriol 30:547–556
    [Google Scholar]
  63. Whitbread R. 1967; Bacterial canker of poplars in Britain. I. The cause of the disease and the role of leaf-scars in infection. Ann. Appl. Biol 59:123–131
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-3-487
Loading
/content/journal/ijsem/10.1099/00207713-33-3-487
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error