1887

Abstract

Fast-growing, acid-producing soybean rhizobia were examined to determine their biochemical relatedness to each other, to typical slow-growing strains, and to other fast-growing species of . Although both the fast- and slow-growing soybean rhizobia were positive for catalase, urease, oxidase, nitrate reductase, and penicillinase, the fast-growing strains grouped with other fast-growing species of in that they tolerated 2% NaCl, were capable of growth at pH 9.5, utilized a large variety of carbohydrates (notably disaccharides), and produced serum zones in litmus milk. In addition, these fast-growing strains were similar to other fast-growing species of in that they produced appreciable levels of β-galactosidase and nicotinamide adenine dinucleotide phosphate-linked 6-phosphogluconate dehydrogenase but had no detectable hydrogenase activity. The fast-growing soybean rhizobia share symbiotic host specificity with , but appear to be related biochemically to the other fast-growing species of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-4-716
1983-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/4/ijs-33-4-716.html?itemId=/content/journal/ijsem/10.1099/00207713-33-4-716&mimeType=html&fmt=ahah

References

  1. Bernaerts M. J., De Ley J. 1963; A biochemical test for crown gall bacteria. Nature (London) 197:406–407
    [Google Scholar]
  2. Bishop P. E., Guevara J. G., Engelke J. A., Evans H. J. 1976; Relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glvcine max. Plant Physiol 57:542–546
    [Google Scholar]
  3. Bryan U. C. 1923; Effects of acid soils on nodule-forming bacteria. Soil Sci 15:542–546
    [Google Scholar]
  4. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon organisms from each other and from Salmonella and Shigella types. J. Bacteriol 52:461–466
    [Google Scholar]
  5. Evans H. J., Purohit K., Cantrell M. A., Eisbrenner G., Russel S. A., Hanus F. J., Lepo J. E. 1981; Hydrogen losses and hydrogenase in nitrogen-fixing organisms. 84–96 Gibson A. H., Newton W. E. Current perspectives in nitrogen fixation Australian Academy of Science; Canberra:
    [Google Scholar]
  6. Foley J. M., Perret C. J. 1962; Screening bacterial colonies for penicillinase production. Nature (London) 195:287–288
    [Google Scholar]
  7. Fred E. B., Baldwin I. L., McCoy E. 1932; Root nodule bacteria and leguminous plants. University of Wisconsin Studies in Science, no. 5 University of Wisconsin; Madison:
    [Google Scholar]
  8. Fred E. B., Davenport A. 1918; Influence of reaction on nitrogen-assimilating bacteria. J. Agric. Res. (Washington, D.C.) 14:317–336
    [Google Scholar]
  9. Gamborg O. L. 1975; Callus and cell culture. 1–9 Gamborg O. L., Wetter L. R. Plant tissue culture methods National Research Council of Canada; Saskatoon, Saskatchewan:
    [Google Scholar]
  10. Glenn A. R., Dilworth M. J. 1981; The uptake and hydrolysis of disaccharides by fast- and slow-growing species of Rhizobium. Arch. Microbiol 129:233–239
    [Google Scholar]
  11. Graham P. H., Parker C. A. 1964; Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20:383–396
    [Google Scholar]
  12. Hirsch P. R., von Montagu J., Johnston A. W. B., Brewin N. J., Schell J. 1980; Physical identification of bacteriocinogenic, nodulation, and other plasmids in strains of Rhizobium leguminosarum. J. Gen. Microbiol 120:403–412
    [Google Scholar]
  13. Hunter C. A., Crecelius H. G. 1938; Detection of hydrogen sulfide in cultures. J. Bacteriol 35:185–196
    [Google Scholar]
  14. Ishizawa S. 1953; Studies on the root nodule bacteria of leguminous plants. I. Characters in artificial media. J. Sci. Soil Manure 23:169–172
    [Google Scholar]
  15. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol 32:378–380
    [Google Scholar]
  16. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol 32:136–139
    [Google Scholar]
  17. Jordan D. C., Allen O. N. 1974; Genus II. Rhizobium. 262–264 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  18. Josey D. P., Beynon J. L., Johnston A. W. B., Beringer J. E. 1979; Strain identification in Rhizobium using intrinsic antibiotic resistance. J. Appl. Bacteriol 46:343–350
    [Google Scholar]
  19. Keele B. B. Jr., Hamilton P. B., Elkan G. H. 1969; Glucose catabolism in Rhizobium japonicum. J. Bacteriol 97:1184–1191
    [Google Scholar]
  20. Keyser H. H., Bohlool B. B., Hu T. S., Weber D. F. 1982; Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632
    [Google Scholar]
  21. Keyser H. H., van Berkum P., Weber D. F. 1982; A comparative study of the physiology of symbiosis formed by Rhizobium japonicum with Glycine max, Vigna unguiculata and Macroptilium atropurpureum. Plant Physiol 70:1626–1630
    [Google Scholar]
  22. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J. Bacteriol 8:493–520
    [Google Scholar]
  23. Kovaks N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178:703
    [Google Scholar]
  24. Leonard L. T. 1943; A simple assembly for use in the testing of cultures of rhizobia. J. Bacteriol 45:523–527
    [Google Scholar]
  25. Lim S. T. 1978; Determination of hydrogenase in free-living cultures of Rhizobium japonicum and energy efficiency of soybean nodules. Plant Physiol 62:609–611
    [Google Scholar]
  26. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  27. Martinez-de Drets G., Arias A. 1970; Metabolism of some polyols by Rhizobium meliloti. J. Bacteriol 103:97–103
    [Google Scholar]
  28. Martinez-de Drets G., Arias A. 1972; Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups. J. Bacteriol 109:467–470
    [Google Scholar]
  29. Martinez-de Drets G., Arias A. 1977; 6-Phospho-d-gluconate:NAD+ 2-oxidoreductase (decarboxylating) from slow-growing rhizobia. J. Bacteriol 130:1139–1143
    [Google Scholar]
  30. May S. N., Bohlool B. B. 1983; Competition among Rhizobium leguminosarum strains for nodulation of lentils (Lens esculenta). Appl. Environ. Microbiol 45:960–965
    [Google Scholar]
  31. Norris D. O. 1965; Acid production by Rhizobium, a unifying concept. Plant Soil 22:143–166
    [Google Scholar]
  32. Schmidt E. L., Bankole R. O., Bohlool B. B. 1968; Fluorescent antibody approach to the study of rhizobia in soil. J. Bacteriol 95:1987–1992
    [Google Scholar]
  33. Smibert R. M., Krieg N. R. 1981; General characterizations. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  34. Vincent J. M. 1970; A manual for the practical study of root-nodule bacteria. IBP handbook15 Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  35. Vincent J. M. 1974; Root-nodule symbiosis with Rhizobium. 265–347 Quispel A. Biology of nitrogen fixation North-Holland Publishing Co; Amsterdam:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-4-716
Loading
/content/journal/ijsem/10.1099/00207713-33-4-716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error