1887

Abstract

The physiological characteristics of three facultatively chemolithotrophic species with ubiquinone 8 (group II) ( THI 091 [T = type strain] THI 023 , and THI 101) were compared. These organisms differ from other facultatively chemolithotrophic strains with ubiquinone 10 (group I) in requiring thiosulfate or elemental sulfur for optimum growth. THI 091, THI 023 , and THI 101 are regarded as three distinct species on the basis of their physiological characteristics. THI 091 differs from THI 023 and THI 101 in its lack of motility, its ability to grow anaerobically with nitrate, and its intermediate formation of polythionate during thiosulfate oxidation. THI 023 is distinguished from THI 101 by its ability to grow heterotrophically with a single carbon source. is not on the Approved Lists of Bacterial Names; therefore, this name is revived. In addition, the description of this organism is emended, considering its inability to grow heterotrophically with a single carbon source.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-34-2-139
1984-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/34/2/ijs-34-2-139.html?itemId=/content/journal/ijsem/10.1099/00207713-34-2-139&mimeType=html&fmt=ahah

References

  1. Allen M. B. 1959; Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte.. Arch. Mikrobiol. 32:270–277
    [Google Scholar]
  2. Charles A. M., Suzuki I. 1966; Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim.. Biophys. Acta 128:510–521
    [Google Scholar]
  3. Harrison A. P. Jr. 1983; Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev.. Int. J. Syst. Bacteriol. 33:211–217
    [Google Scholar]
  4. Katayama-Fujimura Y., Enokizono Y., Kuraishi H. 1983; Deoxyribonucleic acid homologies among species of the genus Thiobacillus. . J. Gen. Appl. Microbiol. 29:287–295
    [Google Scholar]
  5. Katayama-Fujimura Y., Kawashima I., Tsuzaki N., Kuraishi H. 1983; Reidentification of Thiobacillus perometabolis ATCC 27793 and Thiobacillus sp. strain A2 with reference to a new species, Thiobacillus rapidicrescens sp. nov.. Int. J. Syst. Bacteriol. 33:532–538
    [Google Scholar]
  6. Katayama-Fujimura Y., Kuraishi H. 1980; Characterization of Thiobacillus novellus and its thiosulfate oxidation.. J. Gen. Appl. Microbiol. 26:357–367
    [Google Scholar]
  7. Katayama-Fujimura Y., Kuraishi H. 1983; Emendation of Thiobacillus perometabolis London and Rittenberg 1967. Int. J. Syst. Bacteriol. 33:650–651
    [Google Scholar]
  8. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. . J. Gen. Microbiol. 128:1599–1611
    [Google Scholar]
  9. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate.. Anal. Chem. 41:898–901
    [Google Scholar]
  10. Leefeldt R. H., Matin A. 1980; Growth and physiology of Thiobacillus novellus under nutrient-limited mixotrophic conditions.. J. Bacteriol. 142:645–650
    [Google Scholar]
  11. Lippert K.-D., Pfennig N. 1969; Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum. Wachstum und CO2-Fixierung.. Arch. Mikrobiol. 65:29–47
    [Google Scholar]
  12. London J. 1963; Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Arch. Mikrobiol. 46:329–337
    [Google Scholar]
  13. London J., Rittenberg S. C. 1967; Thiobacillus perometabolis nov. sp., a non-autotrophic thiobacillus.. Arch. Mikrobiol. 59:218–225
    [Google Scholar]
  14. Mizoguchi T., Sato T., Okabe T. 1976; New sulfur-oxidizing bacteria capable of growing heterotrophically , Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. J. Ferment. Technol. 54:181–191
    [Google Scholar]
  15. Peck H. D. Jr. 1968; Energy-coupling mechanisms in chemolithotrophic bacteria.. Annu. Rev. Microbiol. 22:489–518
    [Google Scholar]
  16. Perez R. C., Matin A. 1980; Growth of Thiobacillus novellus on mixed substrates (mixotrophic growth).. J. Bacteriol. 142:633–638
    [Google Scholar]
  17. Rittenberg S. C. 1969; The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria.. Adv. Microb. Physiol. 3:159–196
    [Google Scholar]
  18. Sato T., Mizoguchi T., Okabe T. 1976; Oxidation of inorganic sulfur compounds by thiobacilli.. J. Ferment. Technol. 54:361–368
    [Google Scholar]
  19. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names.. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  20. Smith D. W., Rittenberg S. C. 1974; On the sulfur-source requirement for growth of Thiobacillus intermedius. . Arch. Microbiol. 100:65–71
    [Google Scholar]
  21. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. . J. Bacteriol. 100:487–497
    [Google Scholar]
  22. Trudinger P. A. 1961; Thiosulphate oxidation and cytochromes in Thiobacillus X. II. Thiosulphate-oxidizing enzyme.. Biochem. J. 78:680–686
    [Google Scholar]
  23. Vishniac W. V. 1974; Genus Thiobacillus, . 456–461 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  24. Vishniac W., Santer M. 1957; The thiobacilli.. Bacteriol. Rev. 21:195–213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-34-2-139
Loading
/content/journal/ijsem/10.1099/00207713-34-2-139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error