1887

Abstract

The phylogenetic relationships among seven strains of methylotrophic methane-producing bacteria were determined by ribosomal ribonucleic acid hybridization and deoxyribonucleic acid homology techniques. The strains tested had deoxyribonucleic acid guanine-plus-cytosine contents of 39 to 43 mol% and represented a diversity of phenotypic characteristics. Our results indicate that these strains should be divided into six species within the genera , and The genus includes strains MS and 227, sp. strain TM-1, strain C2A, and strain S-6. The genus is represented by strain Tindari 3, and the genus is represented by strain TMA-10. Despite phenotypic similarities between and , we propose that these species remain in separate genera based on differences in ribosomal ribonucleic acid homology and fractional differences in midpoint temperatures. The divisions indicated by deoxyribonucleic acid homology experiments complemented the ribosomal ribonucleic acid hybridization results. Phenotypic characteristics were consistent with these phylogenetic divisions; an apparent exception was cell wall composition, which is a conserved trait. had only a thin protein cell wall, but all other strans of previously studied have been reported to have heteropolysaccharide cell walls. We present evidence which indicates that a protein component may be associated with the heteropolysaccharide cell wall of strain 227.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-34-4-444
1984-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/34/4/ijs-34-4-444.html?itemId=/content/journal/ijsem/10.1099/00207713-34-4-444&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Micribiol. Rev 43:260–296
    [Google Scholar]
  2. Bishop D. H. L., Claybrook J. R., Spiegelman S. 1967; Electrophoretic separation of viral nucleic acids on polyacrylamide gels. J. Mol. Biol 26:373–387
    [Google Scholar]
  3. Conway de Macario E., Macario A. J. L., Magariõos M. C., König H., Kandler O. 1983; Dissecting the antigenic mosaic of the archaebacterium Methanobacterium thermoautotrophicum by monoclonal antibodies of defined molecular specificity. Proc. Natl. Acad. SciU.S.A 80:6346–6350
    [Google Scholar]
  4. Conway de Macario E., Macario A. J. L., Wolin M. J. 1982; Specific antisera and immunological procedures for characterization of methanogenic bacteria. J. Bacteriol 149:320–328
    [Google Scholar]
  5. Douglas C., Achatz F., Böck A. 1980; Electrophoretic characterization of ribosomal proteins from methanogenic bacteria. Zentralbl. Bakteriol. Parasitenkd. Infektionskr Hyg. Abt. 1 Orig. Reihe C 1:1–11
    [Google Scholar]
  6. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zahlen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  7. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. 117–132 Norris J. R., Ribbons D. W. Methods in microbiology 3B Academic Press, Inc; New York:
    [Google Scholar]
  8. Huser B. A., Wuhrmann K., Zehnder A. J. B. 1982; Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol 132:1–9
    [Google Scholar]
  9. Johnson J. L. 1973; The use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol 23:308–315
    [Google Scholar]
  10. Johnson J. L. 1981; Genetic characterization. 450–472 Gerhardt P. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  11. Johnson J. L., Harich B. 1983; Comparisons of procedures for determining ribosomal ribonucleic acid similarities. Curr. Microbiol 9:111–120
    [Google Scholar]
  12. Kandler O. 1982; Cell wall structures and their phylogenetic implications. Zentralbl. Bakteriol. Parasitenkd. Infektionskr Hyg. Abt. 1 Orig. Reihe C 3:149–160
    [Google Scholar]
  13. Kandler O., Hippe H. 1977; Lack of Peptidoglycan in the cell walls of Methanosarcina barkeri . Arch. Microbiol 113:57–60
    [Google Scholar]
  14. Kandler O., König H. 1978; Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol 118:141–152
    [Google Scholar]
  15. König H., Stetter K. O. 1982; Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl. Bakteriol. Parasitenkd. Infektionskr Hyg. Abt. 1 Orig. Reihe C 3:478–490
    [Google Scholar]
  16. Mah R. A. 1980; Isolation and characterization of Methanococcus mazei . Curr. Microbiol 3:321–326
    [Google Scholar]
  17. Mah R. A., Kuhn D. A. 1984; Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et. emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Int. J. Syst. Bacteriol 34:263–265
    [Google Scholar]
  18. Mah R. A., Smith M. R., Baresi L. 1978; Studies on an acetate-fermenting strain of Methanosarcina . Appl. Environ. Microbiol 35:1174–1184
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  20. Marshall C. L., Wicken A. J., Brown A. D. 1969; The outer layer of the cell envelope of Halobacterium halobium . Can. J. Biochem 47:71–74
    [Google Scholar]
  21. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol 113:237–251
    [Google Scholar]
  22. Schauer N. L., Ferry J. G. 1980; Metabolism of formate in Methanobacterium formicicum . J. Bacteriol 142:800–807
    [Google Scholar]
  23. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  24. Schleifer K. H., Stackebrandt E. 1983; Molecular systematics of prokaryotes. Annu. Rev. Microbiol 37:143–187
    [Google Scholar]
  25. Selin Y. M., Harich B., Johnson J. L. 1983; Preparation of labeled nucleic acids (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr. Microbiol 8:127–132
    [Google Scholar]
  26. Sowers K. R., Baron S. F., Ferry J. G. 1984; Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol 47:971–978
    [Google Scholar]
  27. Sowers K. R., Ferry J. G. 1983; Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol 45:684–690
    [Google Scholar]
  28. Stackebrandt E., Seewaldt E., Ludwig W., Schleifer K.-H., Huser B. A. 1982; The phylogenetic position of Methanothrix soehngenii. Elucidation by a modified technique of sequencing oligonucleotides from 16S RNA. Zentralbl. Bakteriol. Parasitenkd. Infektionskr Hyg. Abt. 1 Orig. Reihe C 3:90–100
    [Google Scholar]
  29. Steensland H., Larsen H. 1969; A study of the cell envelope of the halobacteria. J. Gen. Microbiol 55:325–336
    [Google Scholar]
  30. Tu J., Prangishvilli D., Huber H., Wildgruber G., Zillig W., Stetter K. O. 1982; Taxonomic relations between archaebacteria including 6 novel genera examined by cross hybridization of DNAs and 16S rRNAs. J. Mol. Evol 18:109–114
    [Google Scholar]
  31. Weiss R. L. 1974; Subunit cell wall of Sulfolobus acidocaldarius . J. Bacteriol 118:275–284
    [Google Scholar]
  32. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem 238:2882–2886
    [Google Scholar]
  33. Zeikus J. G., Bowen V. G. 1975; Comparative ultrastructure of methanogenic bacteria. Can. J. Microbiol 21:121–129
    [Google Scholar]
  34. Zhilina T. N. 1971; The fine structure of Methanosarcina . Microbiology (USSR) 40:674–680
    [Google Scholar]
  35. Zhilina T. N. 1983; A new obligate halophilic methane-producing bacterium. Microbiology (USSR) 52:375–382
    [Google Scholar]
  36. Zinder S. H., Mah R. A. 1979; Isolation and characterization of a thermophilic strains of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol 38:996–1008
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-34-4-444
Loading
/content/journal/ijsem/10.1099/00207713-34-4-444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error