1887

Abstract

The name is proposed for a group of chiefly psychrotrophic, aerobic, gram-negative, nonmotile, oxidase-positive coccobacilli commonly found associated with fish and processed meat and poultry products. The deoxyribonucleic acid base composition was found to vary from 44 to 46 mol% guanine plus cytosine. The properties of the psychrobacters and the moraxellae are very similar except that the optimum growth temperature for most psychrobacters is 20 to 25°C. Unlike the moraxellae, many psychrobacters are able to form acid aerobically from glucose and several other sugars. Some psychrobacters have an optimal growth temperature of 35 to 37°C and have been isolated from pathological specimens derived from humans and animals. Deoxyribonucleic acid samples from all psychrobacters were able to transform the same auxotroph of a competent strain to prototrophy, thus demonstrating that these organisms are members of a single genospecies. The psychrobacters appear to be distantly related to the moraxellae, and we suggest that strains of be included in the family . The type strain (strain A351) has been deposited in the American Type Culture Collection as strain ATCC 43116.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-3-388
1986-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/3/ijsem-36-3-388.html?itemId=/content/journal/ijsem/10.1099/00207713-36-3-388&mimeType=html&fmt=ahah

References

  1. American Type Culture Collection 1985 Catalogue of strains. American Type Culture Collection. Rockville, Md:
    [Google Scholar]
  2. Baumann P. 1968; Isolation of Acinetobacter from soil and water. J. Bacteriol. 96:39–42
    [Google Scholar]
  3. Baumann P., Doudoroff M., Stanier R. Y. 1968; A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 95:1520–1541
    [Google Scholar]
  4. Bpvre K., Fuglesang J. E., Hagen N., jantzen E., Frpholm L. D. 1976; Moraxella atlantae sp. nov. and its distinction from Moraxella phenylpyruvica. Int. J. Syst. Bacteriol. 26:511–521
    [Google Scholar]
  5. Bpvre K., Fuglesang J. E., Henriksen S. D., La Page S. P., Lautrop H., Snell J. J. S. 1974; Studies on a collection of gram-negative bacterial strains showing resemblance to moraxellae: examination by conventional bacteriological methods. Int. J. Syst. Bacteriol. 24:438–446
    [Google Scholar]
  6. Bpvre K., Hagen N. 1981 The family Neisseriaceae’. rod-shaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. 1506–1529 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G.ed The prokaryotes 2 SpringerVerlag; Berlin:
    [Google Scholar]
  7. Brisou J., Prévôt A. R. 1954; Etudes de systématique bactérienne. X. Révision des espèces réunies dans le genre Achromobacter. Ann. Inst. Pasteur (Paris) 86:722–728
    [Google Scholar]
  8. Bryn K., Jantzen E., Bpvre K. 1977; Occurence and patterns of waxes in Neisseriaceae. J. Gen. Microbiol. 102:33–13
    [Google Scholar]
  9. Buttiaux R., Gagnon P. 1959; Au sujet de la classification des Pseudomonas et des Achromobacter. Ann. Inst. Pasteur Lille 10:121–149
    [Google Scholar]
  10. Chai T.-J. 1981; Usefulness of electrophoretic pattern of cell envelope protein as a taxonomic tool for fishhold slime Moraxella species. Appl. Environ. Microbiol. 42:351–356
    [Google Scholar]
  11. Corlett D. A., Lee J. S., Sinnhuber R. O. 1965; Application of replica plating and computer analysis for rapid identification of bacteria in some foods. II. Analysis of microbial flora in irradiated Dover sole (Microstomas pacificus). Appl. Microbiol. 13:818–822
    [Google Scholar]
  12. Georgala D. L. 1958; The bacterial flora of the skin of the North Sea cod. J. Gen. Microbiol. 18:84–91
    [Google Scholar]
  13. Gill C. O., Newton K. G. 1977; The development of the aerobic spoilage flora on meat stored at chill temperatures. J. Appl. Bacteriol. 43:189–195
    [Google Scholar]
  14. Henriksen S. D. 1973; Moraxella, Acinetobacter, and the Mimeae. Bacteriol. Rev. 37:522–561
    [Google Scholar]
  15. Ingram M., Shewan J. M. 1960; Introductory reflections on the Pseudomonas-Achromobacter group. J. Appl. Bacteriol. 23:373–378
    [Google Scholar]
  16. Ito H., Sato T., Iizuka H. 1976; Study of the intermediate type of Moraxella and Acinetobacter occurring in radurized Vienna sausages. Agric. Biol. Chem. 40:867–873
    [Google Scholar]
  17. Johnson J. L., Anderson R. S., Ordal E. J. 1970; Nucleic acid homologies among the oxidase-negative Moraxella species. J. Bacteriol. 101:568–573
    [Google Scholar]
  18. Juni E. 1972; Interspecies transformation of Acinetobacter. genetic evidence for a ubiquitous genus. J. Bacteriol. 112:917–931
    [Google Scholar]
  19. Juni E. 1984 Genus III. Acinetobacter. 303–307 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  20. Juni E., Heym G. A. 1980; Transformation assay for identification of psychrotrophic achromobacters. Appl. Environ. Microbiol. 40:1106–1114
    [Google Scholar]
  21. Lahellec C., Meurier C., Bennejean G., C atsar as M. 1975; A study of 5920 strains of psychrotrophic bacteria isolated from chickens. J. Appl. Bacteriol. 38:89–97
    [Google Scholar]
  22. Lautrop H. 1974 Genus III. Moraxella. 433–436 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th ed.. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Laycock R. A., Regier L. W. 1970; Pseudomonads and achromobacters in the spoilage of irradiated haddock of different preirradiated quality. Appl. Microbiol. 20:333–341
    [Google Scholar]
  24. Lee J. S., Harrison J. M. 1968; Microbial flora of pacific hake (Merluccius productus). Appl. Microbiol. 16:1937–1938
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  27. McLean R. A., Sulzbacher W. L., Mudd S. 1951; Micrococcus cryophilus, sp. nov.: a large coccus especially suitable for cytologic study. J. Bacteriol. 62:723–728
    [Google Scholar]
  28. Newell P. C., Tucker R. G. 1968; Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem. J. 106:279–287
    [Google Scholar]
  29. Pelroy G. A., Seman J. P., Eklund M. W. 1967; Changes in the microflora of irradiated petrale sole (Eopsetta jordani) fillets stored aerobically at 0.5°C. Appl. Microbiol. 15:92–96
    [Google Scholar]
  30. Ravin A. W. 1963; Experimental approaches to the study of bacterial phylogeny. Am. Nat. 97:307–318
    [Google Scholar]
  31. Russell N. J. 1974; The lipid composition of the psychrophilic bacterium Micrococcus cryophilus. J. Gen. Microbiol. 80:217–225
    [Google Scholar]
  32. Schefferle H. E. 1965; The microbiology of built up poultry litter. J. Appl. Bacteriol. 28:403–411
    [Google Scholar]
  33. Shewan J. M., Hobbs G., Hodgkiss W. 1960; A determinative scheme for the identification of certain genera of gramnegative bacteria with special reference to the Pseudo-monadaceae. J. Appl. Bacteriol. 23:379–390
    [Google Scholar]
  34. Tai P.-C., Jackson H. 1969; Mesophilic mutants of an obligate psychrophile, Micrococcus cryophilus. Can. J. Microbiol. 15:1145–1150
    [Google Scholar]
  35. Thornley M. J. 1967; Taxonomic study of Acinetobacter and related genera. J. Gen. Microbiol. 49:211–257
    [Google Scholar]
  36. Thornley M. J., Ingram M., Barnes E. M. 1960; The effects of antibiotics and irradiation on the Pseudomonas-Achromo-bacter flora of chilled poultry. J. Appl. Bacteriol. 23:487–498
    [Google Scholar]
  37. Tiwari N. P., Maxey R. B. 1972; Moraxella-Acinetobacter as contaminants of beef and occurrence in radurized product. J. Food Sci. 37:901–903
    [Google Scholar]
  38. Warskow A. L., Juni E. 1972; Nutritional requirements of Acinetobacter strains isolated from soil, water, and sewage. J. Bacteriol. 112:1014–1016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-3-388
Loading
/content/journal/ijsem/10.1099/00207713-36-3-388
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error