1887

Abstract

Among the nitrogen-fixing bacteria associated with the roots of (L.) Kunth in salt-affected soils in the Punjab region of Pakistan, we found a homogeneous group of eight diazotrophs. Cells are vibrioid to S shaped, are motile by one polar flagellum, and produce granules of poly-β-hydroxybutyrate. They have a respiratory type of metabolism, show microaerophilic growth when fixing nitrogen, grow well on salts of organic acids, and can also use fructose and mannitol. On nitrogen-free semisolid media, they require biotin, utilize mannitol, but not glucose or sucrose, and cannot acidify glucose aerobically or anaerobically. Optimal growth occurs at 0.25% NaCl and 41°C. Deoxyribonucleic acid (DNA)-ribosomal ribonucleic acid (rRNA) hybridizations show that the organisms belong to the rRNA branch, where they cluster together with They form a phenotypically and protein electrophoretically homogeneous group of bacteria, clearly distinct from , and As no DNA-DNA binding was found with any of the three species, we propose a fourth species for this group of isolates. Because of better growth at increased NaCl concentrations, we named the new species Strain Au 4 (= LMG 7108) is the type strain, which has been deposited at the Deutsche Sammlung von Mikroorganismen, Göttingen, Federal Republic of Germany, as DSM 3675.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-37-1-43
1987-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/37/1/ijsem-37-1-43.html?itemId=/content/journal/ijsem/10.1099/00207713-37-1-43&mimeType=html&fmt=ahah

References

  1. Baldani J. L, Baldani V. L. D., Sampaio M. J. A. M., Döbereiner J. 1984; A fourth Azospirillum species from cereal roots. An. Acad. Bras. Cienc. 56:365
    [Google Scholar]
  2. Baldani J. L, Baldani V. L. D., Seldin L., Döbereiner J. 1986; Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36:86–93
    [Google Scholar]
  3. Cacares E. A. R. 1982; Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 44:990–991
    [Google Scholar]
  4. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  5. De Ley J. 1978; Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357Proceedings of the 4th International Conference on Plant Pathogenic Bacteria 1 Gilbert-Clarey; Tours, France:
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  7. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  8. De Ley J., Tytgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:193–207
    [Google Scholar]
  9. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  10. De Smedt J., Bauwens M., Tytgat R., De Ley J. 1980; Intra- and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria. Int. J. Syst. Bacteriol. 30:106–122
    [Google Scholar]
  11. De Smedt J., De Ley J. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 27:222–240
    [Google Scholar]
  12. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  13. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  14. Döbereiner J. 1980 Forage grasses and grain crops. 535–556 Bergersen F. J.ed Methods for evaluating biological nitrogen fixation John Wiley & Sons, Ltd., Chichester; United Kingdom:
    [Google Scholar]
  15. Döbereiner J. 1983 Ten years Azospirillum. 9–23 Klingmtiller W.ed zospirillum II: genetics, physiology, ecology Birkhäuser Verlag; Basel:
    [Google Scholar]
  16. Döbereiner J., Day J. M. 1976 Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. 518–538 Newton W. E., Nyman C. J.ed Proceedings of the 1st International Symposium on N2 Fixation Washington State University Press; Pullman:
    [Google Scholar]
  17. Döbereiner J., Day J. M., Dart P. J. 1972; Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacterpaspali association. J. Gen. Microbiol. 71:103–116
    [Google Scholar]
  18. Drews G. 1976 Mikrobiologisches Praktikum. , 3rd. SpringerVerlag; Berlin:
    [Google Scholar]
  19. Falk E. C., Döbereiner J., Johnson J. L., Krieg N. R. 1985; Deoxyribonucleic acid homology of Azospirillum amazonense Magalhaes et al. 1984 and emendation of the description of the genus Azospirillum. Int. J. Syst. Bacteriol. 35:117–118
    [Google Scholar]
  20. Falk E. C., Johnson J. L., Baldani V. L. D., Döbereiner J., Krieg N. R. 1986; Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int. J. Syst. Bacteriol. 36:80–85
    [Google Scholar]
  21. Gillis M., De Ley J. 1975; Determination of the molecular complexity of double-stranded phage genome DNA from initial renaturation rates. The effect of DNA base composition. J. Mol. Biol. 98:447–464
    [Google Scholar]
  22. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol. 30:7–27
    [Google Scholar]
  23. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12:143–153
    [Google Scholar]
  24. Haahtela K., Wartiovaara T., Sundman V., Skujinš J. 1981; Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Appl. Environ. Microbiol. 41:203–206
    [Google Scholar]
  25. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  26. Kersters K. 1985 Numerical methods in the classification of bacteria by protein electrophoresis. 337–368 Goodfellow M., Jones D., Priest F. G.ed Computer-assisted bacterial systematics Acadmic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  27. Kiredjian M., Holmes B., Kersters K., Guilvout I., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  28. Krieg N. R., Döbereiner J. 1984 Genus Azospirillum Tarrand, Krieg and Döbereiner 1979, 79AL (effective publication: Tarrand, Krieg and Döbereiner 1978, 967). 94–104 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  30. Magalhaes F. M., Baldani J. I., Souto S. M., Kuykendall J. R., Döbereiner J. 1983; A new acid tolerant Azospirillum species. An. Acad. Bras. Cienc. 55:417–430
    [Google Scholar]
  31. Malik K. A., Zafar Y., Hussain A. 1980; Nitrogenase activity in the rhizosphere of Kallar grass (Diplachne fusca (Linn.) Beauv.). Biologia 26:107–112
    [Google Scholar]
  32. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  33. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  34. McClung C. R., Patriquin D. G., Davis R. E. 1983; Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33:605–612
    [Google Scholar]
  35. Okon Y. 1985; Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3:223–228
    [Google Scholar]
  36. Postgate J. R. 1982 The fundamentals of nitrogen fixation. Cambridge University Press; Cambridge:
    [Google Scholar]
  37. Reinhold B., Hurek T., Fendrik I. 1985; Strain-specific chemotaxis of Azospirillum spp. J. Bacteriol. 162:190–195
    [Google Scholar]
  38. Reinhold B., Hurek T., Niemann E.-G., Fendrik I. 1986; Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol. 52:520–526
    [Google Scholar]
  39. Richards G. M. 1974; Modification of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 57:369–376
    [Google Scholar]
  40. Schlegel H. G., Jannasch H. W. 1981 Prokaryotes and their habitats. 43–82 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer-Verlag; Berlin:
    [Google Scholar]
  41. Smibert R. M., Krieg N. R. 1981 General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  42. Sprent J. I. 1984 Effects of drought and salinity on heterotrophic nitrogen fixing bacteria and on infection of legumes by rhizobia. 295–302 Veeger C., Newton W. E.ed Advances in nitrogen fixation research Dr. W. Junk Publishers, The Hague; The Netherlands:
    [Google Scholar]
  43. Tarrand J. J., Krieg N. R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24:967–980
    [Google Scholar]
  44. Wood A. G., Menezes E. M., Dijkstra C., Duggan D. E. 1982 Methods to demonstrate the megaplasmids (or minichromosomes) in Azospirillum. 18–34 Klingmüller W.ed Azospirillum genetics, physiology, ecology Birkhäuser Verlag; Basel:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-37-1-43
Loading
/content/journal/ijsem/10.1099/00207713-37-1-43
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error