1887

Abstract

A new species of anaerobic bacterium which produces acetate from methanol is described. Hydrogen and carbon dioxide served as carbon and energy sources. Growth substrates included several C compounds, pyruvate, glycerol, lactate, serine, and mono- and di-alcohols. Acetate was the only fermentation product in most cases. The organism is gram negative, nonsporeforming, and mesophilic. Cells are curved rods, which are motile by means of flagella that arise on the concave side of the cell. The morphology of the strain is very similar to that of species, except for the absence of spores. The guanine-plus-cytosine content of the deoxyribonucleic acid (DNA) is mol% and is similar to that of (47.4 mol%). DNA-DNA hybridization experiments showed a 37.8% homology with the DNA of and a 12.5% homology with the DNA of . Therefore, the new isolate is described as a new species of the genus . This proposition is emphasized by the 16S ribosomal ribonucleic acid characterization of our isolate (C. R. Woese, unpublished data). We propose the name . The type strain of is DSM 3637. Syntrophic cultures of the new isolate with were established with methanol, glycerol, and C to C primary alcohols.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-37-2-93
1987-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/37/2/ijsem-37-2-93.html?itemId=/content/journal/ijsem/10.1099/00207713-37-2-93&mimeType=html&fmt=ahah

References

  1. Adamse A. D. 1980; New isolation of Clostridium aceticum (Wieringa). Antonie van Leeuwenhoek J. Microbiol. Serol 46:523–531
    [Google Scholar]
  2. Adamse A. D., Velzeboer C. T. M. 1982; Features of a Clostridium, strain CV-AAI, an obligatory anaerobic bacterium producing acetic acid from methanol. Antonie van Leeuwenhoek J. Microbiol. Serol. 48:305–313
    [Google Scholar]
  3. Bache R., Pfennig N. 1981; Selective isolation of methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  5. Balch W. E., Schoberth S., Tanner R. S., Wolfe R. S. 1977; Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol 24:355–361
    [Google Scholar]
  6. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791
    [Google Scholar]
  7. Braun M., Gottschalk G. 1982; Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:368–376
    [Google Scholar]
  8. Braun M., Mayer F., Gottschalk G. 1981; Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293
    [Google Scholar]
  9. Brenner D. J., Fanning G. R., Skerman F. J., Falkow S. 1972; Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 109:953–965
    [Google Scholar]
  10. Brenner D. J., Steigerwalt A. G., Falcao D. P., Weaver R. E., Fanning G. C. 1976; Characterization of Yersinia entero-colitica and Yersinia pseudotuberculosis by deoxyribonucleic acid hybridization and by biochemical reactions. Int. J. Syst. Bacteriol. 26:180–194
    [Google Scholar]
  11. Bryant M. P. 1956; The characteristics of strains of Selenomonas isolated from rumen contents. J. Bacteriol 72:162–167
    [Google Scholar]
  12. Bryant M. P., Wolin E. A., Wolin J. M., Wolfe R. S. 1967; Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59:20–31
    [Google Scholar]
  13. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  14. Eichler B., Schink B. 1984; Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetic anaerobe. Arch. Microbiol. 140:147–152
    [Google Scholar]
  15. Eichler B., Schink B. 1985; Fermentation of primary alcohols and diols and pure culture of syntrophically alcoholoxiding anaerobes. Arch. Microbiol. 143:60–66
    [Google Scholar]
  16. Fischer F., Lieske R., Winzer K. 1939; Biologische Gasreaktionen. II. Mitteilung: Uber die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohllensäure mit Wasserstoff zu Methan. Biochem. Z. 245:2–12
    [Google Scholar]
  17. Genthner B. R., Davie C. L., Bryant M. P. 1981; Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19
    [Google Scholar]
  18. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  19. Hermann M., Noll K. M., Wolfe R. S. 1986; Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl. Environ. Microbiol. 51:11241126
    [Google Scholar]
  20. Kingsley V. V., Hoeniger J. F. M. 1973; Growth, structure and classification of Selenomonas. Bacteriol. Rev. 37:479–521
    [Google Scholar]
  21. Krumholz L. R., Bryant M. P. 1985; Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456
    [Google Scholar]
  22. Krumholz L. R., Bryant M. P. 1986; Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313318
    [Google Scholar]
  23. Leigh J. A., Mayer F., Wolfe R. S. 1981; Acetogenium kivui, a new thermophilic hydrogen-oxiding acetogenic bacterium. Arch. Microbiol. 129:275–280
    [Google Scholar]
  24. Lorowitz W. H., Bryant M. P. 1984; Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964
    [Google Scholar]
  25. Möller B., Obmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa ovata. sp. nov. Arch. Microbiol. 139:388–396
    [Google Scholar]
  26. Ohwaki K., Hungate R. E. 1977; Hydrogen utilization by clostridia in sewage sludge. Appl. Environ. Microbiol. 33:12701274
    [Google Scholar]
  27. Ollivier B., Cordruwisch R., Lombardo A., Garcia J. L. 1985; Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol. 142:307–310
    [Google Scholar]
  28. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  29. Popoff M. Y., Coynault C. 1980; Use of DEAE-cellulose filters in the SI nuclease method for bacterial deoxyribonucleic acid hybridization. Ann. Microbiol. (Paris) 131A:151–155
    [Google Scholar]
  30. Reddy C. A., Bryant M. P., Wolin M. J. 1972; Characteristics of S-organism isolated from Methanobacillus omelianski. J. Bacteriol. 109:539–545
    [Google Scholar]
  31. Reynolds E. S. 1983; The use of lead citrate at high pH as an electron-opaque stain in elution microscopy. J. Cell Biol 17:33208–212
    [Google Scholar]
  32. Sleat R., Mah R. A., Robinson R. 1985; Acetoanaerobium noterae gen. nov. sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int. J. Syst. Bacteriol. 35:10–15
    [Google Scholar]
  33. Stackebrandt E., Pohla H., Kroppenstedt R., Hippe H., Woese C. R. 1985; 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphercr. on the phylogenic origin of Gram-positive eubacteria. Arch. Microbiol. 143:270–276
    [Google Scholar]
  34. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180
    [Google Scholar]
  35. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260
    [Google Scholar]
  36. Wieringa K. T. 1940; The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 6:251–262
    [Google Scholar]
  37. Winter J. U., Wolfe R. S. 1979; Complete degradation of carbohydrates to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch. Microbiol. 121:97–102
    [Google Scholar]
  38. Winter J. U., Wolfe R. S. 1980; Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol 124:73–79
    [Google Scholar]
  39. Zeikus J. G., Lynd L. H., Thompson T. E., Krzycki J. A., Weimer P. J., Hegge P. W. 1980; Isolation and characterization of a new methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3:381–386
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-37-2-93
Loading
/content/journal/ijsem/10.1099/00207713-37-2-93
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error