1887

Abstract

Bacterial strain GP9 (T = type strain), a nonmotile, nonsporeforming, mesophilic, methanogenic bacterium, was isolated from the primary sludge obtained from the waste treatment facility of a major kraft pulp mill in Canada. Single cells were 6.0 by 0.8 μm and stained gram positive. Growth and methane production occurred only with H-CO as the substrate. Acetate, formate, propionate, butyrate, pyruvate, methanol, or trimethylamine could not serve as a sole source of carbon and energy for growth. The optimum pH for growth was between 5.6 and 6.2; consistent growth and methane production were not observed below pH 4.68. The optimum temperature for growth was 35°C, and little or no growth was observed during incubation at 15 and 50°C. Kanamycin and bacitracin were severe inhibitors of growth and methanogenesis, whereas 100 μM bromoethanesulfonic acid caused 30% inhibition. Supernatant from primary sludge enhanced growth by about 10%. The DNA base composition was 34 mol% guanine plus cytosine. On the basis of physiological characteristics, indirect immunofluorescence typing, and DNA-DNA hybridization studies, the isolate is named sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-1-12
1990-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/1/ijsem-40-1-12.html?itemId=/content/journal/ijsem/10.1099/00207713-40-1-12&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  2. Blotevogel K.-H., Fischer U. 1985; Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec, nov. Arch. Microbiol. 142:218–222
    [Google Scholar]
  3. Blotevogel K.-H., Fischer U., Mocha M., Jannsen S. 1985; Methanobacterium thermoalcaliphilum spec, nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142:211–217
    [Google Scholar]
  4. Boone D. R., Whitman W. B. 1988; Proposal of minimum standards for describing new taxa of methanogenic bacteria. Int. J. Syst. Bacteriol. 38:212–219
    [Google Scholar]
  5. Breuil C., Patel G. B. 1980; Composition of Methanospirillum hungatii GP1 during growth on different media. Can. J. Microbiol. 26:577–582
    [Google Scholar]
  6. De Ley J. 1970; Reexamination of the association between melting point, bouyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  7. Jain M. K., Thompson T. E., Conway de Macario E., Zeikus J. G. 1987; Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov. Syst. Appl. Microbiol. 9:77–82
    [Google Scholar]
  8. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  9. Johnson J. L. 1984 Nucleic acids in bacterial classification. 8–11 Krieg N. R.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  10. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136:254–261
    [Google Scholar]
  11. King G. M., Berman T., Wiebe W. J. 1981; Methane formation in the acidic peats of Okefenokee swamp, Georgia. Am. Midi. Nat. 105:386–389
    [Google Scholar]
  12. König H. 1984; Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can. J. Microbiol. 30:1477–1481
    [Google Scholar]
  13. Macario A. J. L., Conway de Macario E. 1983; Antigenic fingerprinting of methanogenic bacteria with polyclonal anti body probes. Syst. Appl. Microbiol. 4:451–458
    [Google Scholar]
  14. Macario A. J. L., Conway de Macario E. 1985 Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecological niches. 213–247 Macario A. J. L., Conway de Macario E.ed Monoclonal antibodies against bacteria 2 Academic Press; Inc., Orlando, Fla:
    [Google Scholar]
  15. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr., Scheltgen E. 1970; Correlation of melting temperature and cesium chloride bouyant density of bacterial deoxyribonucleic acid. J. Bacteriol. 101:333–338
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  17. Patel G. B. 1984; Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can. J. Microbiol. 30:1383–1396
    [Google Scholar]
  18. Patel G. B., Agnew B. J. 1981; A simple apparatus for measuring the Eh of anaerobic media. Can. J. Microbiol. 27:853–855
    [Google Scholar]
  19. Patel G. B., Baudet C., Agnew B. J. 1988; Nutritional requirements for growth of Methanothrix concilii. Can. J. Microbiol. 34:73–77
    [Google Scholar]
  20. Peterson G. L. 1977; A simplification of the protein method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–356
    [Google Scholar]
  21. Sprott G. D., Bird S. E., McDonald I. J. 1985; Proton motive force as a function of the pH at which Methanobacterium bryantii is grown. Can. J. Microbiol. 31:1031–1034
    [Google Scholar]
  22. Sprott G. D., Shaw K. M., Jarrell K. F. 1983; Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. J. Biol. Chern. 258:4026–4031
    [Google Scholar]
  23. Whitman W. B. 1985 Methanogenic bacteria. 3–84 Woese C. R., Wolfe R. S.ed The bacteria 8 Academic Press; Inc., New York:
    [Google Scholar]
  24. Williams R. T., Crawford R. L. 1984; Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 47:12661271
    [Google Scholar]
  25. Williams R. T., Crawford R. L. 1985; Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl. Environ. Microbiol. 50:1542–1544
    [Google Scholar]
  26. Winter J., Lerp C., Zabel H.-P., Wildenhauer F. X., König H., Schindler F. 1984; Methanobacterium wolfei, sp. nov., a new tungs ten-requiring, thermophilic, autotrophic methanogen. Syst. Appl. Microbiol. 5:457–466
    [Google Scholar]
  27. Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36:380–382
    [Google Scholar]
  28. Zeikus J. G., Wolfe R. S. 1972; Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109:707–713
    [Google Scholar]
  29. Zellner G., Bleicher K., Braun E., Kneifel H., Tindall B. J., Conway de Macario E., Winter J. 1989; Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch. Microbiol. 151:1–9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-1-12
Loading
/content/journal/ijsem/10.1099/00207713-40-1-12
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error