1887

Abstract

Four strains of budding, hyphal bacteria, which had very similar chemotaxonomic properties, were isolated from the Baltic Sea. The results of DNA-DNA hybridization experiments, indicated that three of the new isolates were closely related, while the fourth was only moderately related to the other three. Sequence signature and higher-order structural detail analyses of the 16S rRNA of strain IFAM 1418 (T = type strain) indicated that this isolate is related to the alpha subclass of the class . Although our isolates resemble members of the genera and in morphology, assignment to either of these genera was excluded on the basis of their markedly lower DNA guanine-plus-cytosine contents. We propose that these organisms should be placed in a new genus, is the type species of this genus, and the type strain of is strain IFAM 1418 (= DSM 5838).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-4-443
1990-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/4/ijsem-40-4-443.html?itemId=/content/journal/ijsem/10.1099/00207713-40-4-443&mimeType=html&fmt=ahah

References

  1. Aristovskaya T. V. 1961; Accumulation of iron in breakdown of organomineral complexes of humus substances by microorganisms. Dokl. Akad. Nauk SSSR 136:954–957 In Russian
    [Google Scholar]
  2. Athwal R. S., Deo S. S., Imaeda R. 1984; Deoxyribonucleic acid relatedness among Mycobacterium leprae, Mycobacterium lepraemurium, and selected bacteria by dot blot and spectrophotometric deoxyribonucleic acid hybridization assays. Int. J. Syst. Bacteriol. 34:371–375
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol. 18:329–366
    [Google Scholar]
  4. Collins M. D., Goodfellow M., Minnikin D. 1980; Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J. Gen. Microbiol. 118:29–37
    [Google Scholar]
  5. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  6. De Borde C. C., Clayton W. N., Herlocher M. L., Maassab H. F. 1986; Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. Anal. Biochem. 157:275–282
    [Google Scholar]
  7. De Smedt J., De Ley J. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 27:222–240
    [Google Scholar]
  8. Dittmer J. C. F., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 5:126–127
    [Google Scholar]
  9. Duchow E., Douglas H. C. 1949; Rhodomicrobium vannielii, a new phototropic bacterium. J. Bacteriol. 58:409–416
    [Google Scholar]
  10. Dunkelblum E., Tan S. H., Silk P. J. 1985; Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry. J. Chern. Ecol. 11:265277
    [Google Scholar]
  11. Eckhardt F. E. W., Roggentin P., Hirsch P. 1979; Fatty acid composition of various hyphal budding bacteria. Arch. Microbiol. 120:81–85
    [Google Scholar]
  12. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  13. Fischer A., Roggentin T., Schlesner H., Stackebrandt E. 1985; 16S ribosomal RNA oligonucleotide cataloguing and the phylogenetic position of Stella humosa.. Syst. Appl. Microbiol. 6:43–47
    [Google Scholar]
  14. Gebers R. 1981; Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int. J. Syst. Bacteriol. 31:302–316
    [Google Scholar]
  15. Gebers R., Martens B., Wehmeyer U., Hirsch P. 1986; Deoxyribonucleic acid homologies of Hyphomicrobium spp., Hyphomonas spp., and other hyphal, budding bacteria. Int. J. Syst. Bacteriol. 36:241–245
    [Google Scholar]
  16. Gebers R., Wehmeyer U., Roggentin T., Schlesner H., Kolbel-Boelke J., Hirsch P. 1985; Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria. Int. J. Syst. Bacteriol. 35:260–269
    [Google Scholar]
  17. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter.. Int. J. Syst. Bacteriol. 30:7–27
    [Google Scholar]
  18. Grienenberger J. M., Simon D. 1975; Structure and biosynthesis of the ribosomal ribonucleic acids from the oncogenic bacterium Agrobacterium tumefaciens.. Biochem. J. 149:23–30
    [Google Scholar]
  19. Harvey D. J. 1982; Picolinyl esters as derivatives for the structural determination of long branched and unsaturated fatty acids. Biomed. Mass Spectrom. 9:33–38
    [Google Scholar]
  20. Hirsch P. 1989 Genus Hyphomicrobium Stutzer and Hartleb 1898. 1895–1904 Staley J. T., Bryant M. P., Pfennig N., Holt J. T.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Hirsch P., Conti S. F. 1964; Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch. Mikrobiol. 48:339–357
    [Google Scholar]
  22. Hirsch P., Hoffmann B. 1989; Dichotomicrobium thermohalophilum gen. nov., spec, nov., budding prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Syst. Appl. Microbiol. 11:291–301
    [Google Scholar]
  23. Hirsch P., Muller M., Schlesner H. 1977; New aquatic budding and prosthecate bacteria and their taxonomic position. Soc. Appl. Bacteriol. Symp. Ser. 6:107–133
    [Google Scholar]
  24. Hori H., Osawa S. 1979; Evolutionary changes in 5S RNA secondary structure and phylogenetic tree of 54 5S RNA species. Proc. Natl. Acad. Sci. USA 76:381–386
    [Google Scholar]
  25. Jacim H., Miskhin A. R. 1965; Separation of carbohydrates on borate-impregnated silica gel plates. J. Chromatogr. 18:170–176
    [Google Scholar]
  26. Kates M. 1964; Bacterial lipids. Adv. Lipid Res. 2:17–90
    [Google Scholar]
  27. Kohler J., Schwartz A. C. 1981; Respiratory ubiquinone-9 from Hyphomicrobium spec, strain ZV 580. Z. Allg. Mikrobiol. 21:117–123
    [Google Scholar]
  28. Kolbel-Boelke J., Gebers R., Hirsch P. 1985; Genome size determinations for 33 strains of budding bacteria. Int. J. Syst. Bacteriol. 35:270–273
    [Google Scholar]
  29. Lane D. J., Pace B., Olson G., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  30. Lechevalier M. P. 1977; Lipids in bacterial taxonomy–a taxonomist’s view. Crit. Rev. Microbiol. 5:109–210
    [Google Scholar]
  31. Lior H., Patel A. 1987; Improved toluidine blue DNA agar for detection of DNA hydrolysis by Campylobacters. J. Clin. Microbiol. 25:2030–2031
    [Google Scholar]
  32. Lyman J., Fleming R. H. 1940; Composition of sea water. J. Mar. Res. 3:134–146
    [Google Scholar]
  33. Mandel M., Igambi L., Bergendahl J., Dodson M. L., Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol. 101:333–338
    [Google Scholar]
  34. Marrs B., Kaplan S. 1970; 23S precursor ribosomal DNA of Rhodopseudotnonas sphaeroides.. J. Mol. Biol. 49:297–317
    [Google Scholar]
  35. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88:200–204
    [Google Scholar]
  36. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980; Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J. Liq. Chromatogr. 133:323–329
    [Google Scholar]
  37. Moore R. L., Hirsch P. 1972; Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria. J. Bacteriol. 110:256–261
    [Google Scholar]
  38. Nichols P. D., Guckert J. G., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulfide adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  39. Nikitin D. I., Vishnewetskaya O. Y., Chumakov K. M., Zlatkin I. V. 1990; Evolutionary relationship of some stalked and budding bacteria (genera Caulobacter, “Hyphobacter,” Hyphomonas and Hyphomicrobium) as studied by the new integral taxonomical method. Arch. Microbiol. 153:123–128
    [Google Scholar]
  40. Pongratz E. 1957; D’une bactérie pediculée isolée d’un pus de sinus. Schweiz. Z. Allg. Pathol. Bakteriol. 20:593–608
    [Google Scholar]
  41. Rhuland L. E., Work E., Deham R. P., Hoare D. S. 1955; The behaviour of the isomers of a,E-diaminopimelic acid on paper chromatography. J. Am. Chern. Soc. 77:4844–4846
    [Google Scholar]
  42. Roggentin T., Hirsch P. 1989; Ribosomal RNA cistron similarities among Hyphomicrobium species and several other hyphal, budding bacteria. Sy st. Appl. Microbiol. 11:140–147
    [Google Scholar]
  43. Rothe B., Fischer A., Hirsch P., Sittig M., Stackebrandt E. 1987; The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen. nov., sp. nov. Arch. Microbiol. 147:92–99
    [Google Scholar]
  44. Schlesner H. 1986; Pirella marina sp. nov., a budding, peptidoglycan-less bacterium from brackish water. Syst. Appl. Microbiol. 8:177–180
    [Google Scholar]
  45. Schlesner H. 1987; Filomicrobium fusiforme gen. nov., sp. nov., a slender budding hyphal bacterium from brackish water. Syst. Appl. Microbiol. 10:63–67
    [Google Scholar]
  46. Schlesner H., Kath T., Fischer A., Stackebrandt E. 1989; Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, P. enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-hke bacteria. Syst. Appl. Microbiol. 12:150–155
    [Google Scholar]
  47. Shaw N. 1968; The detection of lipids on chromatograms with the periodate-Schiff reagent. Biochim. Biophys. Acta 164:435436
    [Google Scholar]
  48. Shaw N. 1974; Lipid composition as a guide to the classification of bacteria. Adv. Appl. Microbiol. 17:63–108
    [Google Scholar]
  49. Slifkin M., Gil G. M. 1983; Rapid biochemical tests for the identification of group A, B, C, F, and G streptococci from throat cultures. J. Clin. Microbiol. 18:29–32
    [Google Scholar]
  50. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii- specific oligonucleotide probe. J. Gen. Microbiol. 136:37–43
    [Google Scholar]
  51. Stackebrandt E., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. 1988; A phylogenetic survey of budding and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter, and “Dichotomicrobium” to the alphasubdivision of purple non-sulfiir bacteria. Arch. Microbiol. 149:547–556
    [Google Scholar]
  52. Stackebrandt E., Ludwig W., Schleifer K. H., Gross H. J. 1981; Rapid cataloguing of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J. Mol. Evol. 17:227–236
    [Google Scholar]
  53. Stutzer A., Hartleb R. 1898; Untersuchungen über die bei der Bildung von Salpeter beobachteten Mikroorganismen. Mitt. Landwirtsch. Inst. Univ. Breslau 1:75–100
    [Google Scholar]
  54. Trentini W. C., Starr M. P. 1967; Growth and ultrastructure of Rhodomicrobium vanniellii as a function of light intensity. J. Bacteriol. 93:1699–1704
    [Google Scholar]
  55. Trüper H. G., Pfennig N. 1981 Characterization and identification of the anoxygenic phototrophic bacteria. 299312 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.ed The prokaryotes. A handbook on habitats, isolation, and identification of bacteria Springer-Verlag KG; Berlin:
    [Google Scholar]
  56. Urakami T., Komagata K. 1987; Characterization and identification of methanol-utilizing Hyphomicrobium strains and a comparison with species of Hyphomonas and Rhodomicrobium.. J. Gen. Appl. Microbiol. 33:521–542
    [Google Scholar]
  57. Wait R., Hudson M. J. 1985; The use of picolinyl esters for the characterization of microbial lipids: application to the unsaturated and cyclopropane fatty acids of Campylobacter species. Lett. Appl. Microbiol. 1:95–99
    [Google Scholar]
  58. Weiner R. M., Devine R. A., Powell D. M., Dagasan L., Moore R. L. 1985; Hyphomonas oceanitis sp. nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov. Int. J. Syst. Bacteriol. 35:237–243
    [Google Scholar]
  59. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221271
    [Google Scholar]
  60. Yamanaka S., Fudo R., Kawaguchi A., Komagata K. 1988; Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids. J. Gen. Appl. Microbiol. 34:57–66
    [Google Scholar]
  61. Zahlen L., Woese C. R. 1975; Prokaryote phylogeny. IV. Concerning the phylogenetic status of a photosynthetic bacterium. J. Mol. Evol. 5:25–34
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-4-443
Loading
/content/journal/ijsem/10.1099/00207713-40-4-443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error