1887

Abstract

Although the nonfermentative, asaccharolytic, putative anaerobes , and are phylogenetically related to the true campylobacters, the type strains of these species exhibited O-dependent microaerophilic growth in brucella broth and on brucella agar. The optimum O levels for growth of these strains ranged from 4 to 14% in brucella broth and from 2 to 8% on brucella agar, when H was provided as the electron donor. No growth occurred under 21% O, and scant or no growth occurred under anaerobic conditions unless fumarate or nitrate was provided as a terminal electron acceptor. Aspartate, asparagine, and malate also served as apparent electron acceptors. The organisms were catalase negative and, except for , oxidase positive. Catalase added to brucella broth enhanced growth. O uptake by all species was inhibited by cyanide and 2-heptyl-4-hydroxyquinoline -oxide. We concluded that these organisms are not anaerobes but instead are microaerophiles, like their campylobacter relatives.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-2-218
1991-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/2/ijsem-41-2-218.html?itemId=/content/journal/ijsem/10.1099/00207713-41-2-218&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254
    [Google Scholar]
  2. Bronder M., Mell H., Stupperich E., Kroger A. 1982; Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch. Microbiol. 131:216–223
    [Google Scholar]
  3. Goodwin C. S., Armstrong J. A., Chilvers T., Peters M., Collins M. D., Sly L., McConnell W., Harper W. E. S. 1989; Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae. comb, nov., respectively. Int. J. Syst. Bacteriol. 39:397–405
    [Google Scholar]
  4. Han Y.-H., Smibert R. M., Krieg N. R. Submitted for publication
  5. Jackson F., Goodman Y. E. 1978; Bacteroides ureolyticus, a new species to accommodate strains previously identified as “Bacteroides corrodens, anaerobic.”. Int. J. Syst. Bacteriol. 28:197–200
    [Google Scholar]
  6. Jacobs N. J., Wolin M. J. 1963; Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of the electron-transport system. Biochim. Biophys. Acta 69:18–28
    [Google Scholar]
  7. Jacobs N. J., Wolin M. J. 1963; Electron-transport system of Vibrio succinogenes. II. Inhibition of electron transport by 2-heptyl-4-hydroxyquinoline N-oxide. Biochim. Biophys. Acta 69:29–39
    [Google Scholar]
  8. Kafkewitz D., Goodman D. 1974; L-Asparaginase production by the rumen anaerobe Vibrio succinogenes. Appl. Microbiol. 27:206–209
    [Google Scholar]
  9. Krieg N. R. 1988; Bacterial classification: an overview. Can. J. Microbiol. 34:536–540
    [Google Scholar]
  10. Krieg N. R., Hoffman P. S. 1986; Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40:107–130
    [Google Scholar]
  11. Kröger A. 1978; Fumarate as terminal acceptor of phosphorylative electron transport. Biochim. Biophys. Acta 505:129–145
    [Google Scholar]
  12. Kröger A., Innerhofer A. 1976; The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur. J. Biochem. 69:487–495
    [Google Scholar]
  13. Kröger A., Innerhofer A. 1976; The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur. J. Biochem. 69:497–506
    [Google Scholar]
  14. Kroger A., Winkler E., Innerhofer A., Hackenberg H., Schagger H. 1979; The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur. J. Biochem. 94:465–475
    [Google Scholar]
  15. Lau P. P., DeBrunner-Vossbrinck B., Dunn B., Miotto K., MacDonell M. T., Rollins D. M., Pillidge C. J., Hespell R. B., Colwell R. R., Sogin M. L., Fox G. E. 1987; Phylogenetic diversity and position of the genus Campylobacter. Syst. Appl. Microbiol. 9:231–238
    [Google Scholar]
  16. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38:56–62
    [Google Scholar]
  17. Robinson J., Cooper J. M. 1970; Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal. Biochem. 33:390–399
    [Google Scholar]
  18. Romaniuk P. J., Zoltowska B., Trust T. J., Lane D. J., Olsen G. J., Pace N. R., Stahl D. A. 1987; Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J. Bacteriol. 169:2137–2141
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1981 General characterization. 413 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  20. Tanner A. C. R., Badger S., Lai C. H., Listgarten M. A., Visconti R. A., Socransky S. S. 1981; Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb, nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432–445
    [Google Scholar]
  21. Tanner A. C. R., Listgarten M. A., Ebersole J. L. 1984; Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275–282
    [Google Scholar]
  22. Tanner A. C. R., Socransky S. S. 1984 Genus Wolinella. 646–650 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Tarrand J. J., Groschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J. Clin. Microbiol. 16:772–774
    [Google Scholar]
  24. Thompson L. M. III, Smibert R. M., Johnson J. L., Krieg N. R. 1988; A phylogenetic study of the genus Campylobacter. Int. J. Syst. Bacteriol. 38:190–200
    [Google Scholar]
  25. Wolin M. J., Wolin E. A., Jacobs N. J. 1961; Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. n. J. Bacteriol. 81:911–917
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-2-218
Loading
/content/journal/ijsem/10.1099/00207713-41-2-218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error