1887

Abstract

The results of DNA-DNA hybridization and chemotaxonomic studies indicated that the glutamic acid producers DSM 20297 (T = type strain), “” DSM 20411, “” DSM 1412 and DSM 20412, DSM 20137, and DSM 20300 and DSM 20163 are members of the same species. It is proposed that all of these strains should be classified in the species . Another glutamic acid-producing strain, DSM 20147, was not related at the species level to and should retain its separate species status. A restriction fragment length polymorphism analysis in which oligonucleotides targeted against conserved regions of 16S and 23S rRNA genes were used as hybridizing probes distinguished the individual strains. This method may be a helpful tool for strain identification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-2-255
1991-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/2/ijsem-41-2-255.html?itemId=/content/journal/ijsem/10.1099/00207713-41-2-255&mimeType=html&fmt=ahah

References

  1. Abe S., Takayama K., Kinoshita S. 1967; Taxonomical studies on glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 13:279–301
    [Google Scholar]
  2. Bercovier H., Kafri O., Sela S. 1986; Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun. 136:1136–1141
    [Google Scholar]
  3. Collins M. D. 1987; Transfer of Brevibacterium ammoniagenes (Cooke and Keith) to the genus Corynebacterium, as Corynebacterium ammoniagenes comb. nov.. Int. J. Syst. Bacteriol. 37:442–443
    [Google Scholar]
  4. Collins M. D., Burton R. A., Jones D. 1988; Corynebacterium amycolatum sp. nov., a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol. Lett 49:349–352
    [Google Scholar]
  5. Collins M. D., Cummins C. S. 1986 Genus Corynebacterium Lehmann and Neumann 1896. 1266–1276 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Collins M. D., Goodfellow M., Minnikin D. E. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. J. Gen. Microbiol. 110:127–136
    [Google Scholar]
  7. Collins M. D., Goodfellow M., Minnikin D. E. 1982; A survey of the structures of mycolic acids in Corynebacterium and related taxa. J. Gen. Microbiol. 128:129–149
    [Google Scholar]
  8. Collins M. D., Goodfellow M., Minnikin D. E. 1982; Fatty acid composition of some mycolic acid-containing coryneform bacteria. J. Gen. Microbiol. 128:2503–2509
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycètes and corynebacteria. J. Gen. Microbiol. 100:221–230
    [Google Scholar]
  10. De Buyser M. L., Morvan A., Grimont F., EI Solh N. 1989; Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J. Gen. Microbiol. 135:989–999
    [Google Scholar]
  11. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  13. Fiedler F., Bude A. 1989; Occurrence and chemistry of cell wall teichoic acids in the genus Brevibacterium. J. Gen. Microbiol. 135:2837–2846
    [Google Scholar]
  14. Fiedler F., Schaffler M. J., Stackebrandt E. 1981; Biochemical and nucleic acid hybridization studies on Brevibacterium linens and related strains. Arch. Microbiol. 129:85–93
    [Google Scholar]
  15. Fiedler F., Schleifer K. H., Cziharz B., Interschick E., Kandler O. 1970; Murein types in Arthrobacter, brevibacteria, corynebacteria and microbacteria. Publ. Fac. Sci. Univ. J. E. Purkyne (Brno) 47:111–122
    [Google Scholar]
  16. Gottlieb P., Rudner R. 1985; Restriction site polymorphism of ribosomal ribonucleic acid gene sets in members of the genus Bacillus. Int. J. Syst. Bacteriol. 35:244–252
    [Google Scholar]
  17. Grimont F., Grimont P. A. D. 1986; Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann. Institut Pasteur/Microbiol. (Paris) 137B:165–175
    [Google Scholar]
  18. Huss V. A. R., FestI H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  19. Jones D., Keddie R. M. 1986 Genus Brevibacterium Breed 1953, 13AL emend. Collins et al.. 1980 61301–1313 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology, vol. 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  20. Keddie R. M., Cure G. L. 1978 Cell wall composition of coryneform bacteria. 47–83 Bousfield I. J., Callely A. G.ed Coryneform bacteria Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  21. Kinoshita S. 1985 Glutamic acid bacteria. 115–142 Demain A. L., Solomon N. A.ed Biology of industrial microorganisms The Benjamin/Cummins Publishing Co.; London:
    [Google Scholar]
  22. Kinoshita S., Takayama S., Akita S. 1958; Taxonomical study of glutamic acid accumulating bacteria, Micrococcus glutamicus, nov.sp. Bull. Agric. Chern. Soc. Jpn. 22:176–185
    [Google Scholar]
  23. Komatsu Y., Kaneko T. 1980; Deoxyribonucleic acid relatedness between some glutamic acid-producing bacteria. Rep. Ferment. Res. Inst. (Tsukuba) 55:1–5
    [Google Scholar]
  24. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. Soc. Appl. Bacteriol. Tech. Ser. 20:173–197
    [Google Scholar]
  25. Kroppenstedt R. M. Personal communication
  26. Laneelle M. A., Asselineau J., Welby M., Norgard M. V., Imaeda T., Pollice M. C., Barksdale L. 1980; Biological and chemical basis for the reclassification of Brevibacterium vitarumen (Bechdel et al.) Breed (Approved Lists, 1980) as Coryne-bacterium vitarumen (Bechdel et al.) comb. nov. and Brevibacterium liquefaciens Okabayashi and Musuo (Approved Lists, 1980) as Corynebacterium liquefaciens (Okabayashi and Masuo) comb. nov.. Int. J. Syst. Bacteriol. 30:539–546
    [Google Scholar]
  27. Liebl W., Klamer R., Schleifer K. H. 1989; Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media. Appl. Microbiol. Biotechnol 32:205–210
    [Google Scholar]
  28. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  29. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  30. Mateos L. M., del Real G., Aguilar A., Martin J. F. 1987; Nucleotide sequence of the homoserine kinase (z/irB) gene of Brevibacterium lactofermentum. Nucleic Acids Res. 15:3922
    [Google Scholar]
  31. Minnikin D. E., Goodfellow M., Collins M. D. 1978 Lipid composition in the classification and identification of coryneform and related taxa. 85–160 Bousfield I. J., Callely A. G.ed Coryneform bacteria Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  32. Moore W. E. C., Moore L. V. H. 1989 Index of the bacterial and yeast nomenclatural changes. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  33. Okumura S., Tsugawa R., Tsumuda T., Kagaeki K., Matsui T., Miyachi N. 1962; Studies on the l-glutamic acid fermentation. I. The new bacteria of the genus Brevibacterium isolated from nature to produce l-glutamic acid. J. Agric. Chern. Soc. Jpn. 62:141–159
    [Google Scholar]
  34. Peoples O. P., Liebl W., Bodis M., Maeng P. J., Folettie M. T., Archer J. A., Sinskey A. J. 1988; Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol. Microbiol. 2:63–72
    [Google Scholar]
  35. Pitcher D. G., Owen R. J., Dyal P., Beck A. 1987; Synthesis of a biotinylated DNA probe to detect ribosomal RNA cistrons in Providencia stuartii. FEMS Microbiol. Lett. 48:283–287
    [Google Scholar]
  36. Potuznik V., Reissbrodt R. 1987 Bakteriologische Nahrmedien fur die Medizinische Mikrobiologie. VEB Gustav Fischer Verlag; Jena, German Democratic Republic:
    [Google Scholar]
  37. Saunders N. A., Harrison T. G., Kachwalla N., Taylor A. G. 1988; Identification of species of the genus Legionella using a cloned rRNA gene from Legionella pneumophila. J. Gen. Microbiol. 134:2363–2374
    [Google Scholar]
  38. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 35:407–477
    [Google Scholar]
  39. Seiler H. 1983; Identification key for coryneform bacteria derived by numerical taxonomic studies. J. Gen. Microbiol. 129:1433–1471
    [Google Scholar]
  40. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  41. Stackebrandt E., Schleifer K. H. 1984 Molecular systematics of actinomycetes and related organisms. 485–504 Bojalil L. F.ed Biological, biochemical, and biomedical aspects of actinomycetes Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  42. Stull T. L., Lipuma J. J., Edling T. D. 1988; A broadspectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J. Infect. Dis. 157:280–286
    [Google Scholar]
  43. Su Y., Yamada K. 1960; Studies on l-glutamic acid fermentation. Part I. Isolation of a l-glutamic acid producing strain and its taxonomical studies. Bull. Agric. Chem. Soc. Jpn. 24:69–74
    [Google Scholar]
  44. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31:131–138
    [Google Scholar]
  45. Suzuki K., Komagata K. 1983; Taxonomic significance of cellular fatty acid composition in some coryneform bacteria. Int. J. Syst. Bacteriol. 33:188–200
    [Google Scholar]
  46. Weiss N. Personal communication
  47. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  48. Yamada K., Komagata K. 1970; Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. J. Gen. Appl. Microbiol. 16:215–224
    [Google Scholar]
  49. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J. Gen. Appl. Microbiol. 18:399–416
    [Google Scholar]
  50. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. V. Classification of coryneform bacteria. J. Gen. Appl. Microbiol. 18:417–431
    [Google Scholar]
  51. Yogev D., Halachmi D., Kenny G. E., Razin S. 1988; Distinction of species and strains of mycoplasmas (Mollicutes) by genomic DNA fingerprints with an rRNA gene probe. J. Clin. Microbiol. 26:1198–1201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-2-255
Loading
/content/journal/ijsem/10.1099/00207713-41-2-255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error