1887

Abstract

A new species that nodulates L. and spp. is proposed on the basis of the results of multilocus enzyme electrophoresis, DNA-DNA hybridization, an analysis of ribosomal DNA organization, a sequence analysis of 16S rDNA, and an analysis of phenotypic characteristics. This taxon, sp. nov., was previously named biovar phaseoli (type II strains) and was recognized by its host range (which includes spp.) and gene organization. In contrast to biovar phaseoli, strains tolerate high temperatures and high levels of acidity in culture and are symbiotically more stable. We identified two subgroups within and describe them in this paper.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-3-417
1991-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/3/ijsem-41-3-417.html?itemId=/content/journal/ijsem/10.1099/00207713-41-3-417&mimeType=html&fmt=ahah

References

  1. Bernaerts M. J., DeLey J. 1963; A biochemical test for crown gall bacteria. Nature (London) 197:406–407
    [Google Scholar]
  2. Beynon J. L., Josey D. P. 1980; Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J. Gen. Microbiol. 118:437–442
    [Google Scholar]
  3. Borthakur D., Downie J. A., Johnston A. W. B., Lamb J. W. 1985; psi, A plasmid-linked Rhizobium phaseoli gene that inhibits exopolysaccharide production and which is required for symbiotic nitrogen fixation. Mol. Gen. Genet. 200:278–282
    [Google Scholar]
  4. Borthakur D., Lamb J. W., Johnston A. W. B. 1987; Identification of two classes of Rhizobium phaseoli genes required for melanin synthesis, one of which is required for nitrogen fixation and activates the transcription of the other. Mol. Gen. Genet. 207:155–160
    [Google Scholar]
  5. Brom S., Martínez E., Davila G., Palacios R. 1988; Narrow- and broad-host-range symbiotic plasmids of Rhizobium spp. strains that nodulate Phaseolus vulgaris. Appl. Environ. Microbiol. 54:1280–1283
    [Google Scholar]
  6. Bromfield E. S. P., Barran L. R. 1990; Promiscuous nodulation of Phaseolus vulgaris, Macroptilium atropurpureum and Leucaena leucocephala by indigenous Rhizobium meliloti. Can. J. Microbiol. 36:369–372
    [Google Scholar]
  7. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  8. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. 1990; Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucleic Acids Res. 18:4028
    [Google Scholar]
  9. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov.. Int. J. Syst. Bacteriol. 38:392–397
    [Google Scholar]
  10. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  11. Cubo M. T., Buendia-Claveria A. M., Beringer J. E., Ruiz-Sainz J. E. 1988; Melanin production by Rhizobium strains. Appl. Environ. Microbiol. 54:1812–1817
    [Google Scholar]
  12. Cunningham S. D., Munns D. A. 1984; The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci. Soc. Am. J. 48:1273–1276
    [Google Scholar]
  13. Darrow R. A., Knotts R. R. 1977; Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem. Biophys. Res. Commun. 78:554–559
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  15. Dixon R. O. D. 1969; Rhizobia (with particular reference to relationships with host plants). Annu. Rev. Microbiol. 23:137–158
    [Google Scholar]
  16. Dowdle S. F., Bohlool B. B. 1985; Predominance of fast-growing Rhizobium japonicum in a soybean field in the People’s Republic of China. Appl. Environ. Microbiol. 50:1171–1176
    [Google Scholar]
  17. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stemnodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  18. Eardly B. D., Hannaway D. B., Bottomley P. J. 1985; Characterization of rhizobia from ineffective alfalfa nodules: ability to nodulate bean plants (Phaseolus vulgaris (L.) Savi). Appl. Environ. Microbiol. 50:1422–1427
    [Google Scholar]
  19. Eardly B. D., Materon L. A., Smith N. H., Johnson D. A., Rumbaugh M. D., Selander R. K. 1990; Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl. Environ. Microbiol. 56:187–194
    [Google Scholar]
  20. Encarnacion S., Narváez V., Martínez E., Mora Y., Taboada H., Bravo A., Calderón J., Mora J. 1990 Glutamine cycling and unbalanced growth in Rhizobium,. 532 Gresshoff P., Roth E., Stacey G., Newton W. E.ed Nitrogen fixation: achievements and objectives Chapman and Hall; New York:
    [Google Scholar]
  21. Flores M., González V., Brom S., Martínez E., Piñero D., Romero D., Davila G., Palacios R. 1987; Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J. Bacteriol. 169:5782–5788
    [Google Scholar]
  22. Fuchs R. L., Keister D. L. 1980; Identification of two glutamine synthetases in Agrobacterium. J. Bacteriol. 141:996–998
    [Google Scholar]
  23. Gil-Serrano A., Sánchez del Junco A., Tejero-Mateo P., Megias M., Caviedes M. A. 1990; Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr. Res. 204:103–107
    [Google Scholar]
  24. Graham P. H., Parker C. A. 1964; Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20:383–396
    [Google Scholar]
  25. Graham P. H., Viteri S. E., Mackie F., Vargas A. A. T., Palacios A. 1982; Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res. 5:121–128
    [Google Scholar]
  26. Jarvis B. D. W., Dick A. G., Greenwood R. M. 1980; Deoxyribonucleic acid homology among strains of Rhizobium trifolii and related species. Int. J. Syst. Bacteriol. 30:42–52
    [Google Scholar]
  27. Jarvis B. D. W., Gillis M., de Ley J. 1986; Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  28. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 32:378–380
    [Google Scholar]
  29. Jordan D. C. 1984 Family III. Rhizobiaceae Conn 1938, 321AL. 234–254 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  30. Karanja N. K., Wood M. 1988; Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: infectiveness and tolerance of acidity and aluminium. Plant Soil 112:7–13
    [Google Scholar]
  31. Karanja N. K., Wood M. 1988; Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: tolerance of high soil temperature and antibiotic resistance. Plant Soil 112:15–22
    [Google Scholar]
  32. Keyser H. H., Ben Bohlool B., Hu T. S., Weber D. F. 1982; Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632
    [Google Scholar]
  33. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst. Zool. 18:1–32
    [Google Scholar]
  34. Lange R. T. 1961; Nodule bacteria associated with the indigenous Leguminosae of south-western Australia. J. Gen. Microbiol. 26:351–359
    [Google Scholar]
  35. Lindstrom K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  36. Martínez E., Flores M., Brom S., Romero D., Davila G., Palacios R. 1988; Rhizobium phaseoli: a molecular genetics view. Plant Soil 108:179–184
    [Google Scholar]
  37. Martínez E., Palacios R. 1984 Is it necessary to improve nitrogen fixation of bean in agricultural fields in México?. 60 Veeger C., Newton W. E.ed Advances in nitrogen fixation research Nijhoff, Junk & Pudoc; The Hague:
    [Google Scholar]
  38. Martínez E., Palacios R., Sánchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169:2828–2834
    [Google Scholar]
  39. Martínez E., Pardo M. A., Palacios R., Cevallos M. A. 1985; Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J. Gen. Microbiol. 131:1779–1786
    [Google Scholar]
  40. Martínez E., Romero D., Palacios R. 1990; The Rhizobium genome. Crit. Rev. Plant Sci. 9:59–93
    [Google Scholar]
  41. Martinez-Romero E., Rosenblueth M. 1990; Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Appl. Environ. Microbiol. 56:2384–2388
    [Google Scholar]
  42. Megias M. Universidad de Sevilla; Seville, Spain: Personal communication
  43. Nei M., Stephens J. C., Saiton N. 1985; Methods for computing the standard errors of branching points in a evolutionary tree and their application to molecular data from humans and apes. Mol. Biol. Evol. 2:66–85
    [Google Scholar]
  44. Noel K. D., Sánchez F., Fernández L., Leemans J., Cevallos M. A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacteriol. 158:148–155
    [Google Scholar]
  45. Oxford G. S., Rollinson D.ed 1983 Protein polymorphism: adaptive and taxonomic significance. Systematics Association Special Volume 24. Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  46. Piñero D., Martinez E., Selander R. K. 1988; Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54:2825–2832
    [Google Scholar]
  47. Quinto C., de la Vega H., Flores M., Fernández L., Bailado T., Soberón G., Palacios R. 1982; Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature (London) 299:724–726
    [Google Scholar]
  48. Ramos M. L. G., Magalhaes N. F. M., Boddey R. M. 1987; Native and inoculated rhizobia isolated from field grown Phaseolus vulgaris: effects of liming an acid soil on antibiotic resistance. Soil Biol. Biochem. 19:179–185
    [Google Scholar]
  49. Rigby P. W. J., Dieckman M., Rhodes C., Berg P. 1976; Labeling deoxyribonucleic acid to a high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251
    [Google Scholar]
  50. Robert F. M., Schmidt E. L. 1985; Somatic serogroups among 55 strains of Rhizobium phaseoli. Can. J. Microbiol. 31:519–523
    [Google Scholar]
  51. Roberts G. P., Leps W. T., Silver L. E., Brill W. J. 1980; Use of two-dimensional polyacrilamide gel electrophoresis to identify and classify Rhizobium strains. Appl. Environ. Microbiol. 39:414–422
    [Google Scholar]
  52. Rosenberg C., Boistard P., Dénarié J., Casse-Delbart F. 1981; Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184:326–333
    [Google Scholar]
  53. Sadowsky M. J., Cregan P. B., Keyser H. H. 1988; Nodulation and nitrogen fixation efficacy of Rhizobium fredii with Phaseolus vulgaris genotypes. Appl. Environ. Microbiol. 54:1907–1910
    [Google Scholar]
  54. Schmidt E. Unpublished data
  55. Scholia M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484–486
    [Google Scholar]
  56. Scholia M. H., Moorefield J. A., Elkan G. H. 1990; DNA homology between species of the rhizobia. Syst. Appl. Microbiol. 13:288–294
    [Google Scholar]
  57. Segovia L., Pinero D., Palacios R., Martinez-Romero E. 1991; Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol. 57:426–433
    [Google Scholar]
  58. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittan T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–884
    [Google Scholar]
  59. Selander R. K., McKinney R. M., Whittam T. S., Bibb W. F., Brenner D. J., Nolte F. S., Pattison P. E. 1985; Genetic structure of populations of Legionella pneumophila. J. Bacteriol. 163:1021–1037
    [Google Scholar]
  60. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. W. H. Freeman & Co.; San Francisco:
    [Google Scholar]
  61. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517
    [Google Scholar]
  62. Trinick M. J. 1980; Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa sp., Acacia farnesiana, and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49:39–53
    [Google Scholar]
  63. Van Larebeke N., Engler G., Holsters M., Van Den El-sacker S., Zaenen I., Schilperoort R. A., Schell J. 1974; Large plasmid in Agrobacterium tumefaciens essential for crown-gall inducing ability. Nature (London) 252:169–170
    [Google Scholar]
  64. Vargas A. A. T., Graham P. H. 1988; Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Res. 19:91–101
    [Google Scholar]
  65. Vargas A. A. T., Graham P. H. 1989; Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant Soil 117:195–200
    [Google Scholar]
  66. Vargas C., Martinez L. J., Megias M., Quinto C. 1990; Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT 899. Mol. Microbiol. 4:1899–1910
    [Google Scholar]
  67. Vincent J. M. 1970 A manual for the practical study of root-nodule bacteria. International Biological Programme Handbook. 73–97 Blackwell Scientific Publications, Ltd.; Oxford:
    [Google Scholar]
  68. Wedlock D. N., Jarvis B. D. W. 1986; DNA homologies between Rhizobium fredii, rhizobia that nodulate Galega sp., and other Rhizobium and Bradyrhizobium species. Int. J. Syst. Bacteriol. 36:550–558
    [Google Scholar]
  69. Young J. P. W. 1985; Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. J. Gen. Microbiol. 131:2399–2408
    [Google Scholar]
  70. Young J. P. W. 1989 The population genetics of bacteria. 417–438 Hopwood D. A., Chater K. F.ed Genetics of bacterial diversity Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  71. Young J. P. W., Johnston A. W. B. 1989; The evolution of specificity in the iegume-Rhizobium symbiosis. Tree 4:341–349
    [Google Scholar]
  72. Zevenhuizen L. P. T. M., Bertocchi C. 1989; Polysaccharide production by Rhizobium phaseoli and the typing of their excreted anionic polysaccharides. FEMS Microbiol. Lett 65:211–218
    [Google Scholar]
  73. Zhang X., Harper R., Karsists M., Lindstron K. 1991; Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41:104–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-3-417
Loading
/content/journal/ijsem/10.1099/00207713-41-3-417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error