1887

Abstract

On the basis of three isolates (strains FC6 [T = type strain], FC4, and RG1) of extremely thermophilic chemolithoautotrophic archaebacteria obtained from solfataric fields on ão Miguel Island, Azores, the new genus is described. These isolates grow obligately chemolithotrophically by reduction of S with H (H-S lithotrophy) and are the first strictly anaerobic members of the order . With a DNA G+C content of 38 mol%, the isolates resemble spp., which, however, are faculatively organotrophic and aerobic S oxidizers. The new isolates are also distinct from spp., which resemble by growing by H-S lithotrophy. However, spp. can also grow aerobically by S oxidation and have G+C contents of 31 mol%. At this time, only one species of the genus is known, sp. nov.; the type strain of is strain FC6 (= DSM 6296).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-4-495
1991-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/4/ijsem-41-4-495.html?itemId=/content/journal/ijsem/10.1099/00207713-41-4-495&mimeType=html&fmt=ahah

References

  1. Allen M. B. 1959; Studies with Cyanidium caldarium, an anomalously pigmented chiorophyte. Arch. Mikrobiol. 32:270–277
    [Google Scholar]
  2. Bailey G. S. 1984 Immunodiffusion in gels. 301–310 Walker J. M.ed Methods in molecular biology, vol. 1. Proteins Humana Press; Clifton, N.J:
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: réévaluation of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  4. Birnstiel M. L., Sells B. H., Purdom I. F. 1962; Kinetic complexity of RNA molecules. J. Mol. Biol. 63:21–39
    [Google Scholar]
  5. Brierley C. L., Brierley J. A. 1973; A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol. 19:183–188
    [Google Scholar]
  6. Brierley C. L., Brierley J. A. 1982; Anaerobic reduction of molybdenum by Sulfolobus species. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:289–294
    [Google Scholar]
  7. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84:54–68
    [Google Scholar]
  8. Brock T. D., Gustafson J. 1976; Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32:567–571
    [Google Scholar]
  9. Darland G., Brock T. D., Samsonoff W., Conti S. F. 1970; A thermophilic, acidophilic Mycoplasma isolated from a coal refuse pile. Science 170:1416–1418
    [Google Scholar]
  10. DeRosa M., DeRosa S., Gambacorta A., Bu’Lock J. D. 1980; Structure of calditol, a new branched-chain nonitol, and the derived tetraether lipids in thermoacidophilic archaebacteria of the Caldariella group. Phytochemistry 19:249–254
    [Google Scholar]
  11. DeRosa M., DeRosa S., Gambacorta A., Minale L., Thomson R. H., Worthington R. D. 1977; Caldariellaquinone, a unique benzo-/>-thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium. J. Chern. Soc. Perkin Trans. 1:653–657
    [Google Scholar]
  12. DeRosa M., Gambacorta A. 1988; The lipids of archaebacteria. Prog. Lipid Res. 27:153–157
    [Google Scholar]
  13. DeRosa M., Gambacorta A., Millonig G., Bu’Lock J. D. 1974; Convergent characters of extremely thermophilic acidophilic bacteria. Experientia 30:866–868
    [Google Scholar]
  14. Fischer F., Zillig W., Stetter K. O., Schreiber G. 1983; Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature (London) 301:511–513
    [Google Scholar]
  15. Gillespie S., Gillespie D. 1971; Ribonucleic acid-deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem. J. 125:481–487
    [Google Scholar]
  16. Grogan D., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like particle, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch. Microbiol. 154:594–599
    [Google Scholar]
  17. Hilpert R., Winter J., Hammes W., Kandier O. 1981; The sensitivity of archaebacteria to antibiotics. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:11–20
    [Google Scholar]
  18. Huber G., Spinnler C., Gambacorta A., Stetter K. O. 1989; Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol. 12:38–47
    [Google Scholar]
  19. Huber H., Thomm M., König H., Thies G., Stetter K. O. 1982; Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132:47–50
    [Google Scholar]
  20. Huber R., Huber G., Segerer A., Seger J., Stetter K. O. 1987 Aerobic and anaerobic extremely thermophilic autotrophs. 44–51 van Versefeld H. W., Duine J. A.ed Microbial growth on C\ compounds Martinus Nijhoff Publisher; Dordrecht, The Netherlands:
    [Google Scholar]
  21. Huber R., Kristjansson J. K., Stetter K. O. 1987; Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch. Microbiol. 149:95–101
    [Google Scholar]
  22. Huber R., Stetter K. O. The order Thermoproteales. Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd. in press Springer Verlag; New York:
    [Google Scholar]
  23. International Journal of Systematic Bacteriology 1980; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 5. Int. J. Syst. Bacteriol. 30:676–677
    [Google Scholar]
  24. International Journal of Systematic Bacteriology 1982; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 8. Int. J. Syst. Bacteriol. 32:266–268
    [Google Scholar]
  25. International Journal of Systematic Bacteriology 1984; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 14. Int. J. Syst. Bacteriol. 34:270–271
    [Google Scholar]
  26. International Journal of Systematic Bacteriology 1987; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 23. Int. J. Syst. Bacteriol. 37:179–180
    [Google Scholar]
  27. International Journal of Systematic Bacteriology 1988; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 25. Int. J. Syst. Bacteriol. 38:220–222
    [Google Scholar]
  28. International Journal of Systematic Bacteriology 1988; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 26. Int. J. Syst. Bacteriol. 38:328–329
    [Google Scholar]
  29. International Journal of Systematic Bacteriology 1989; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 31. Int. J. Syst. Bacteriol. 39:495–497
    [Google Scholar]
  30. Kandier O. 1982; Cell wall structures and their phylogenetic implications. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:149–160
    [Google Scholar]
  31. Kelly R. B., Cozzarelli N. R., Deutscher M. P., Lehmann J. R., Kornberg A. 1970; Enzymatic synthesis of deoxyribonucleic acid. J. Biol. Chern. 245:39–45
    [Google Scholar]
  32. Kessel M., Klink F. 1980; Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature (London) 287:250–251
    [Google Scholar]
  33. Klink F.University of Kiel 1988 Personal communication
  34. König H. 1984; Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can. J. Microbiol. 30:1477–1481
    [Google Scholar]
  35. König H., Stetter K. O. 1982; Isolation and characterization of Methanolobus tindarius sp. nov., a novel coccoid methanogen growing only on methanol and methylamines. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:478–490
    [Google Scholar]
  36. Kunz J., Stetter K. O. Unpublished data
  37. Langworthy T. A., Tornabene T. G., Holzer G. 1982; Lipids of archaebacteria. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 3:228–244
    [Google Scholar]
  38. Lanzotti V., Trincone A., Gambacorta A., DeRosa M., Breitmaier E. 1986; ]H and 13C NMR assignment of benzothiophenquinones of the sulfur-oxidizing archaebacterium Sulfolobus solfataricus. Eur. J. Biochem. 160:37–40
    [Google Scholar]
  39. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst. Appl. Microbiol. 8:100–105
    [Google Scholar]
  40. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  41. Ouchterlony O. 1962; Diffusion-in-gel methods for immunological analysis. II. Prog. Allergy 6:30–154
    [Google Scholar]
  42. Rachel R. University of Regensburg; 1990 Personal communication
  43. Reddy T. R., Suryanarayana T. 1988; Novel histone-like DNA-binding proteins in the nucleoid from the acidothermophilic archaebacterium Sulfolobus acidocaldarius that protect DNA against thermal denaturation. Biochim. Biophys. Acta 949:87–96
    [Google Scholar]
  44. Ruhland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of a,e-diamino-pimelic acid on paper chromatographs. J. Am. Chern. Soc. 77:4844–4846
    [Google Scholar]
  45. Schleifer K. H., Stackebrandt E. 1983; Molecular systematics of prokaryotes. Annu. Rev. Microbiol. 37:143–187
    [Google Scholar]
  46. Segerer A., Langworthy T. A., Stetter K. O. 1988; Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solafatara fields. Syst. Appl. Microbiol. 10:161–171
    [Google Scholar]
  47. Segerer A., Neuner A., Kristjansson J. K., Stetter K. O. 1986; Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol. 36:559–564
    [Google Scholar]
  48. Segerer A., Stetter K. O. 1989 Genus I. Sulfolobus,. 2250–2251 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  49. Segerer A., Stetter K. O. 1989 Genus II. Acidianus,. 2251–2253 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  50. Segerer A., Stetter K. O. The genus Thermoplasma. Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd. in press Springer Verlag; New York:
    [Google Scholar]
  51. Segerer A., Stetter K. O. The order Sulfolobales. Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd. in press Springer Verlag; New York:
    [Google Scholar]
  52. Segerer A., Stetter K. O., Klink F. 1985; Two contrary modes of chemolithotrophy in the same archaebacterium. Nature (London) 313:787–789
    [Google Scholar]
  53. Segerer A. H., Wettstein A. B., Deutzmann R., Müller A., Stetter K. O. Manuscript in preparation
  54. Shivvers D. W., Brock T. D. 1973; Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J. Bacteriol. 114:706–710
    [Google Scholar]
  55. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  56. Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed 1989 Bergey’s manual of systematic bacteriology, vol. 3. 2236–2253 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  57. Stetter K. O. 1977; Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus casei. Isolation of transcription factor y. Hoppe-Seyler’s Z. Physiol. Chern. 358:1093–1104
    [Google Scholar]
  58. Stetter K. O. 1982; Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature (London) 300:258–260
    [Google Scholar]
  59. Stetter K. O. 1989 Order III. Sulfolobales ord. nov.. 2250 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  60. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol. 4:535–551
    [Google Scholar]
  61. Stetter K. O., Thomm M., Winter J., Wildgruber G., Huber H., Zillig W., Janekovic D., König H., Palm P., Wunderl S. 1981; Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:166–178
    [Google Scholar]
  62. Stetter K. O., Zillig W. 1985 Thermoplasma and the thermophilic sulfur-dependent archaebacteria. 85–170 Woese C. R., Wolfe R. S.ed The bacteria, vol. VIII. Archaebacteria Academic Press, Inc.; San Diego:
    [Google Scholar]
  63. Thurl S., Witke W., Buhrow I., Schäfer W. 1986; Quinones from archaebacteria, II. Different types of quinones from sulphur-dependent archaebacteria. Hoppe-Seyler’s Z. Physiol. Chern. 367:191–197
    [Google Scholar]
  64. Trincone A., Lanzotti V., Nicolaus B., Zillig W., DeRosa M., Gambacorta A. 1989; Comparative lipid analysis of aerobically and anaerobically grown Desulfurolobus ambivalens, an autotrophic thermophilic archaeobacterium. J. Gen. Microbiol. 135:2751–2757
    [Google Scholar]
  65. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  66. Woese C. R., Kandier O., Wheelis M. L. 1990; Towards a natural system of organisms: proposals for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sei. USA 87:4576–4579
    [Google Scholar]
  67. Woese C. R., Maniloff J., Zahlen L. B. 1980; Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sei. USA 77:494–498
    [Google Scholar]
  68. Wood A. P., Kelly D. P., Norris P. R. 1987; Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch. Microbiol. 146:382–389
    [Google Scholar]
  69. Zillig W. 1989 Order II. Thermoproteales,. 2240 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  70. Zillig W., Stetter K. O., Schäfer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:200–227
    [Google Scholar]
  71. Zillig W., Stetter K. O., Schulz W., Priess H., Scholz I. 1980; The Sulfolobus-” Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch. Microbiol. 125:259–260
    [Google Scholar]
  72. Zillig W., Yeats S., Holz I., Böck A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. Microbiol. 8:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-4-495
Loading
/content/journal/ijsem/10.1099/00207713-41-4-495
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error