1887

Abstract

Of 87 strains previously identified as Migula 1900, 58 had G+C contents of 47.0 to 51.9 mol%, a range that included the G+C content (48.7 mol%) of the type strain. The G+C contents for three other groups consisting of 5, 7, and 17 strains were 37.0 to 41.9, 42.0 to 46.9, and 52.0 mol% or higher, respectively. DNA reassociation studies showed that 25 of the 58 strains with G+C contents of 47.0 to 51.9 mol% were closely related genetically to the type strain and to each other. For the most part, this genetically related group was phenotypically homogeneous; variations in the fermentation of mannitol and mannose were observed. My results strongly suggest that many of the strains were misclassified as . Consequently, much of the phenotypic heterogeneity of the species Migula 1900 is not due to variations exhibited by genetically related organisms, but is the result of variability introduced by the presence of genetically unrelated strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-4-510
1991-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/4/ijsem-41-4-510.html?itemId=/content/journal/ijsem/10.1099/00207713-41-4-510&mimeType=html&fmt=ahah

References

  1. Breuil C., Gounot A. M. 1972; Recherches préliminaires sur les bactéries lipolytiques psychrophiles des sols et des eaux. Can. J. Microbiol. 18:1445–1451
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  3. Dubos R. J., Hotchkiss R. D. 1941; The production of bactericidal substances by aerobic sporulating bacilli. J. Exp. Med. 73:629–640
    [Google Scholar]
  4. Edwards P. R., Ewing W. H. 1972 Identification of Enterobacteriaceae. Burgess Publishing Co.; Minneapolis:
    [Google Scholar]
  5. Flügge C. 1894; Die Aufgaben und leistungen der Milchsterilisirung gegenüber den Darmkrankheiten der Saulinge. Zentralbl. Bakteriol., Parasitenkd. Infektionskr. Hyg. 17:272–342
    [Google Scholar]
  6. Ford W. W. 1916; Studies on aerobic spore-bearing non-pathogenic bacteria. II. Miscellaneous cultures. J. Bacteriol. 1:518–526
    [Google Scholar]
  7. Gause G. F., Brazhnikova M. G. 1944; Gramicidin S. Origin and mode of action. Lancet ii:715–716
    [Google Scholar]
  8. Gordon R. E., Haynes W. C., Pang C. H. 1973 The genus Bacillus. Agricultural Handbook no. 427. U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  9. Hajna A. A. 1945; Triple-sugar iron agar medium for the identification of the intestinal group of bacteria. J. Bacteriol. 49:516–517
    [Google Scholar]
  10. Haynes W. C., Wickerham L. J., Hesseltine C. W. 1955; Maintenance of cultures of industrially important microorganisms. AppL Microbiol. 3:361–368
    [Google Scholar]
  11. Migula W. 1900 System der Bakterien. 2 Gustav Fisher; Jena:
    [Google Scholar]
  12. Maeller V. 1955; Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol. Microbiol. Scand. 36:158–172
    [Google Scholar]
  13. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33:46–52
    [Google Scholar]
  14. Priest F. G., Goodfellow M., Todd C. 1988; A frequency matrix for the probablistic identification of some bacilli. J. Gen. Microbiol. 134:1847–1882
    [Google Scholar]
  15. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  16. Singer S., Doherty K. A., Stambaugh A. D. 1988; Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, D34. 76
  17. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  18. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  19. Steel K. J. 1961; The oxidase reaction as a taxonomic tool. J. Gen. Microbiol. 25:297–306
    [Google Scholar]
  20. Szybalski W. 1968; Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol. 12B:330–360
    [Google Scholar]
  21. Udaka S., Tsukagoshi N., Yamagata H. 1989; Bacillus brevis, a host bacterium for efficient extracellular production of useful proteins. Biotechnol. and Genet. Eng. Rev. 7:113–146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-4-510
Loading
/content/journal/ijsem/10.1099/00207713-41-4-510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error