1887

Abstract

We performed a numerical analysis of the results of biochemical and nutritional tests done with strains of nonfluorescent plant-pathogenic spp. A total of 57 tests were used, and determinative tests which discriminated between taxa were identified. , and were distinguished as distinct members of the genus . Strains of and formed a single cluster having affinities with . Strains of were allocated to spp. Strains of subsp. subsp. , and formed a single relatively homogeneous cluster, within which three subclusters were discerned. Strains presently identified as and as , including the type strain of , formed a single homogeneous subcluster. Strains of subsp. and subsp. formed two subclusters. Genomic probes prepared from DNAs of the type strains of subsp. subsp. , and gave positive reactions with all of the strains of these species which were tested in colony hybridization studies, but not with strains of other nonfluorescent spp. The G+C ratios of these type strains were all in the range from 67 to 71 mol%, and the levels of homology determined in DNA-DNA reassociation studies were all greater than 70%. subsp. subsp. , and are considered to be members of a single species, , with and as junior synonyms; subsp. and subsp. are proposed as subspecies.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-41-4-516
1991-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/41/4/ijsem-41-4-516.html?itemId=/content/journal/ijsem/10.1099/00207713-41-4-516&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W. 1962; Variables influencing results, and the precise definition of steps in Gram staining as a means of standardizing the results obtained. Stain Technol. 37:139–155
    [Google Scholar]
  2. Bradbury J. F. 1984 Pseudomonas Migula 1894. 110–185 Guide to the plant pathogenic bacteria CAB International Mycological Institute; Kew, United Kingdom:
    [Google Scholar]
  3. Committee on Bacteriological Technic of the Society of American Bacteriologistsed 1957 Manual of microbiological methods. McGraw-Hill Book Co.; New York:
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the identification of medical bacteria. 1–217 Cambridge University Press; Cambridge:
    [Google Scholar]
  5. Crosse J. E., Garrett C. M. E. 1963; Studies on the bacteriophagy of Pseudomonas mors-prunorum, Ps. syringae and related organisms. J. Appl. Bacteriol. 26:159–177
    [Google Scholar]
  6. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  7. Dhanvantari B. N., Dye D. W., Young J. M. 1978; Pseudomonas pomi Cole 1959 is a later subjective synonym of Acetobacter pasteurianus (Hansen 1879) Beijerinck 1898, and Pseudomonas melophthora Allen and Riker 1932 is a nomen dubium. Int. J. Syst. Bacteriol. 28:532–537
    [Google Scholar]
  8. Dye D. W. 1968; A taxonomic study of the genus Erwinia. I. The “amylovora” group. N. Z. J. Sci. 11:590–607
    [Google Scholar]
  9. Fahy P. C., Hayward A. C. 1983 Media and methods for isolation and diagnostic tests. 337–378 Fahy P. C., Persley G. J.ed Plant bacterial diseases-a diagnostic guide Academic Press; Sydney, Australia:
    [Google Scholar]
  10. Fuerst J. A., Hayward A. C. 1969; The sheathed flagellum of Pseudomonas stizolobii. J. Gen. Microbiol. 58:239–245
    [Google Scholar]
  11. Goto M. 1983; Pseudomonas pseudoalcaligenes subsp. konjaci subsp. nov., the causal agent of bacterial leaf blight of konjac (Amorphophallus konjac Koch.). Int. J. Syst. Bacteriol. 33:539–545
    [Google Scholar]
  12. Goto M. Personal communication
  13. Hartford T., Sneath P. H. A. 1990; Experimental error in DNA-DNA pairing: a survey of the literature. J. Appl. Bacteriol. 68:527–542
    [Google Scholar]
  14. Hayward A. C. 1983 Pseudomonas: the non-fluorescent pseudomonads. 107–140 Fahy P. C., Persley G. J.ed Plant bacterial diseases-a diagnostic guide Academic Press; Sydney, Australia:
    [Google Scholar]
  15. Hayward A. C. 1989; The non-fluorescent pseudomonads: current status and future prospects. Fitopatol. Brasil. 4:11–16
    [Google Scholar]
  16. Hildebrand D. C. 1971; Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial pathogens. Phytopathology 61:430–436
    [Google Scholar]
  17. Hu F.-P., Young J. M., Triggs C. M. 1990 Phenetic analysis and preliminary genetic characterization of non-fluorescent plant pathogenic Pseudomonas spp.. 457–463 Klement Z.edPlant pathogenic bacteria. Proceedings of the 7th International Conference on Plant Pathogenic BacteriaBudapest1989 Academiai Kiado; Budapest:
    [Google Scholar]
  18. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  19. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301–307
    [Google Scholar]
  20. Lelliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470–489
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning-a laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  22. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  23. Palleroni N. J. 1984 Genus Pseudomonas Migula 1894. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  24. Ramundo B. A., Claflin L. E. 1990; Demonstration of synonymy between the plant pathogens Pseudomonas avenae and Pseudomonas rubrilineans. J. Gen. Microbiol. 136:2029–2033
    [Google Scholar]
  25. Schaad N. W., Kado C. I., Sumner D. R. 1975; Synonymy of Pseudomonas avenae Manns 1909 and Pseudomonas alboprecipitans Rosen 1922. Int. J. Syst. Bacteriol. 25:133–137
    [Google Scholar]
  26. Schaad N. W., Sowell G., Goth R. W., Colwell R. R., Webb R. E. 1978; Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov.. Int. J. Syst. Bacteriol. 28:117–125
    [Google Scholar]
  27. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  28. Sneath P. H. A. 1984 Bacterial nomenclature. 19–23 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  29. Sneath P. H. A. 1989; Analysis and interpretation of sequence data for bacterial systematists: the view of a numerical taxonomist. Syst. Appl. Microbiol. 12:15–31
    [Google Scholar]
  30. Stead D. E. 1990 Personal communication
  31. Swings J., Hayward A. C. 1990 Taxonomy. 125–131 Klement Z., Rudolph K., Sands D. C.ed Methods in phytobacteriology Akademiai Kiado; Budapest:
    [Google Scholar]
  32. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  33. Truper H. G., Kramer J. 1981 Principles of characterization and identification of prokaryotes. 176–193 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer-Verlag; Berlin:
    [Google Scholar]
  34. Ulitzur S. 1972; Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochim. Biophys. Acta 272:1–11
    [Google Scholar]
  35. Van Zyl E., Steyn P. L. 1991; Taxonomy of the phytopathogenic Pseudomonas species belonging to the acidovorans rRNA complex. Syst. Appl. Microbiol. 14:165–168
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on the Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  37. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxydizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxy doflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  38. Young J. M. 1977; Xanthomonas pruni in almond in New Zealand. N. Z. J. Agric. Res. 20:105–107
    [Google Scholar]
  39. Young J. M. 1987; New plant disease record in New Zealand: Pseudomonas syringae pv. persicae from nectarine, peach, and Japanese plum. N. Z. J. Agric. Res. 30:235–247
    [Google Scholar]
  40. Young J. M., Wilkie J. P., Hu F.-P., Triggs C. M. Unpublished data
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-41-4-516
Loading
/content/journal/ijsem/10.1099/00207713-41-4-516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error