1887

Abstract

We compared non-methane-, non-methanol-, and methylamine-utilizing bacteria, including , a tetramethylammonium-utilizing bacterium, and an -dimethylformamide-utilizing bacterium. These bacteria are gram-negative, nonsporeforming, subpolarly flagellated, rod-shaped organisms. Reproduction occurs by budding. The DNA base compositions are 62 to 64 mol% guanine plus cytosine. The cellular fatty acids contain a large amount of C acid. The major hydroxy acid is 3-OH C acid. The major ubiquinone is ubiquinone Q-10. These bacteria are clearly separated from authentic species ( rRNA group) on the basis of utilization of methylamine, morphological and chemotaxonomic characteristics, DNA-DNA homology, and rRNA-DNA homology. They were divided into three subgroups on the basis of their physiological characteristics and DNA-DNA homology data. A new genus, , and three new species, comb. nov., sp. nov., and sp. nov., are proposed. The type species of gen. nov. is , with type strain JCM 7852. The type strain of is strain TH-3 (= JCM 7854), and the type strain of is strain DM-81 (= JCM 7853).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-1-84
1992-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/1/ijs-42-1-84.html?itemId=/content/journal/ijsem/10.1099/00207713-42-1-84&mimeType=html&fmt=ahah

References

  1. Bauwens M., De Ley J. 1981 Improvement in the taxonomy of Flavobacterium by DNA:rRNA hybridizations. 2731 Reichenbach H., Weeks O. B.ed The Flavobacterium-Cytophaga groups Verlag Chemie, Weinheim; Federal Republic of Germany:
    [Google Scholar]
  2. Bellion E., Hersch L. B. 1972; Methylamine metabolism in a.Pseudomonas species. Arch. Biochem. Biophys. 153:368–374
    [Google Scholar]
  3. Burdon K. L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J. Bacteriol. 52:665–678
    [Google Scholar]
  4. De Dooren de Jong L. E. 1927; Ueber Protaminophage Bakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 71:193–232
    [Google Scholar]
  5. De Ley J., Mannheim W., Segers P., Lievens A., Denyn M., Vanhoucke M., Gillis M. 1987; Ribosomal ribonucleic acid cistron similarities and taxonomic neighborhood of Burcella and CDC group Vd. Int. J. Syst. Bacteriol. 37:35–42
    [Google Scholar]
  6. De Smedt J., De Ley J. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 27:222–240
    [Google Scholar]
  7. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  8. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and PseudomonasAike strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridization. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  9. Doronina N. V., Govorukhina N. I., Trotsenko Y. A. 1983; Blastobacter aminooxidans, a new species of bacteria growing autotrophically on methylated amines. Mikrobiologiya 52:709–715
    [Google Scholar]
  10. Ghisalba O., Cevery P., Kuenzi M., Schar H.-P. 1985; Biodegradation of chemical waste by specialized methylotrophs, an alternative to physical methods of waste disposal. Conserv. & Recycling 8:47–71
    [Google Scholar]
  11. Govorukhina N. L., Trotsenko Y. A. 1991; Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 41:158–162
    [Google Scholar]
  12. Green P. N., Gillis M. 1989; Classification of Pseudomonas aminovorans and some related methylated amine utilizing bacteria. J. Gen. Microbiol. 135:2071–2076
    [Google Scholar]
  13. Hampton D., Zatman L. J. 1973; The metabolism to tetramethylammonium chloride by bacteria 5H2. Biochem. Soc. Trans. 1:667–668
    [Google Scholar]
  14. Hirsch P. 1984 Genus Hyphomicrobium Stutzer and Hartleb 1898,76AL. 1895–1904 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  15. Hirsch P., Muller M. 1985; Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from fresh water habitats. Syst. Appl. Microbiol. 6:281–286
    [Google Scholar]
  16. Ikemoto S., Kuraishi H., Komagata K., Azuma R., Suto T., Murooka H. 1978; Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24:199–213
    [Google Scholar]
  17. International Journal of Systematic Bacteriology 1990; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 34. Int. J. Syst. Bacteriol. 40:320–321
    [Google Scholar]
  18. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  19. Jenkins O., Byrom D., Jones D. 1987; Methylophilus: a new genus of methanol-utilizing bacteria. Int. J. Syst. Bacteriol. 37:446–448
    [Google Scholar]
  20. Jordan D. C. 1984 Genus I. Rhizobium Frank 1889,338AL. 235–242 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Kaneko T., Nozaki R., Aizawa K. 1978; Deoxyribonucleic acid relatedness between Bacillus antracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22:639–641
    [Google Scholar]
  22. Kung H. F., Wagner C. 1970; Oxidation of Ci compounds by Pseudomonas sp. MS. Biochem. J. 116:357–365
    [Google Scholar]
  23. Litchfield J. H. 1977; Comparative technical and economic aspects of single-cell protein processes. Adv. Appl. Microbiol. 22:267–305
    [Google Scholar]
  24. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol. 43:273–292
    [Google Scholar]
  25. Oyaizu H., Komagata K. 1981; Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium-Cytophaga complex. J. Gen. Appl. Microbiol. 27:57–107
    [Google Scholar]
  26. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  27. Palleroni N. J. 1984 Genus I. Pseudomonas Migula 1894,237AL (Nom. Cone. Opin. 5, Jud, Comm. 1952,237). 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  28. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  29. Quayle J. R. 1972; The metabolism of one-carbon compounds by micro-organisms. Adv. Microb. Physiol. 7:119–203
    [Google Scholar]
  30. Rothe B., Fischer A., Hirsch P., Sitting M., Stackebrandt E. 1987; The phylogenetic position of the budding bacteria Blastobacter aggregates and Gemmobacter aquatilis gen. nov., sp. nov. Arch. Microbiol. 147:92–99
    [Google Scholar]
  31. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  32. Shaw W. V., Tasi L., Stadtman E. R. 1966; The enzymatic synthesis of N-methylglutamic acid. J. Biol. Chern. 241:935–945
    [Google Scholar]
  33. Skerman V. B. I., McGoman V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  34. Sly L. I. 1985; Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov. Int. J. Syst. Bacteriol. 35:40–45
    [Google Scholar]
  35. Smith N. R., Gordon R. E., Clark F. E. 1952 Aerobic sporeforming bacteria. Agricultural Monograph no. 16. United States Department of Agriculture; Washington, D. C.:
    [Google Scholar]
  36. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  37. Toda T. 1923; A staining method for bacterial flagella. Nihon Iji Shinpo 283:113
    [Google Scholar]
  38. Trotsenko Y. A., Doronina N. V., Hirsch P. 1989 Genus Blastobacter Zavarzin 1961,962AL. 1963–1968 Saley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  39. Tsuji K., Tsien H. C., Hanson R. S., DePalma S. R., Scholtz R., LaRoche S. 1990; 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136:1–10
    [Google Scholar]
  40. Urakami T., Araki H., Kobayashi H. 1990; Isolation and identification of tetramethylammonium-biodegrading bacteria. J. Ferment. Bioeng. 68:41–44
    [Google Scholar]
  41. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1990; Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,7V-dimethylformamide. Int. J. Syst. Bacteriol. 40:287–291
    [Google Scholar]
  42. Urakami T., Kobayashi H., Araki H. 1990; Isolation and identification of 7V,A-dimethylformamide-biodegrading bacteria. J. Ferment. Bioeng. 68:45–47
    [Google Scholar]
  43. Urakami T., Komagata K. 1984; Protomonas, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 34:188–201
    [Google Scholar]
  44. Urakami T., Komagata K. 1984 Cellular fatty acid composition and quinone system in methane-utilizing bacteria and methylamine-utilizing bacteria. 123–133 Crawford R. L., Hanson R. S.ed Microbial growth on Ci compoundsThe Proceedings of the Fourth International Symposium American Society for Microbiology; Washington, D. C.:
    [Google Scholar]
  45. Urakami T., Komagata K. 1986; Methanol-utilizing Ancylobacter strains and comparison of their cellular fatty acid compositions and quinone systems with those of Spirosoma, Flectobacillus, and Runella species. Int. J. Syst. Bacteriol. 36:415–421
    [Google Scholar]
  46. Urakami T., Komagata K. 1986; Emendation of Methylobacillus Yordy and Weaver 1977, a genus for methanol-utilizing bacteria. Int. J. Syst. Bacteriol. 36:502–511
    [Google Scholar]
  47. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol. 32:317–341
    [Google Scholar]
  48. Urakami T., Komagata K. 1987; Characterization of species of marine methylotrophs of the genus Methylophaga. Int. J. Syst. Bacteriol. 37:402–406
    [Google Scholar]
  49. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamineutilizing bacteria. J. Gen. Appl. Microbiol. 33:135–165
    [Google Scholar]
  50. Urakami T., Komagata K. 1987; Characterization and identification of methanol-utilizing Hyphomicrobium species and a comparison with species of Hyphomonas and Rhodomicrobium. J. Gen. Appl. Microbiol. 33:521–542
    [Google Scholar]
  51. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int. J. Syst. Bacteriol. 39:50–55
    [Google Scholar]
  52. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol. 39:116–121
    [Google Scholar]
  53. Urakami T., Yano I. 1989; Methanol-utilizing Mycobacterium strains isolated from soils. J. Gen. Appl. Microbiol. 35:125–133
    [Google Scholar]
  54. Wagner C., Levitch M. E. 1975; Enzymes involved in the assimilation of one-carbon units by Pseudomonas MS. J. Bacteriol. 122:905–910
    [Google Scholar]
  55. Whittenbury R., Dalton H., Ecclestone M., Reed H. L. 1975 The different types of methane-oxidizing bacteria and some of their more unusual properties. 1–9The Organizing Committeeed Microbial growth on Cx compoundsProceedings of the First International Symposium Society of Fermentation Technology; Osaka, Japan:
    [Google Scholar]
  56. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  57. Woese C. R., Blanz P., Hahn C. M. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol. 5:179–195
    [Google Scholar]
  58. Yabuuchi E., Tanimura E., Ohyama A., Yano I., Yamamoto A. 1979; Flavobacterium devorans ATCC 10829: a strain of Pseudomonas paucimobilis. J. Gen. Appl. Microbiol. 25:95–107
    [Google Scholar]
  59. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyal sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119
    [Google Scholar]
  60. Yamada Y., Takinami-Nakamura H., Tahara Y., Oyaizu H., Komagata K. 1982; The ubiquinone systems in the strains of Pseudomonas species. J. Gen. Appl. Microbiol. 28:7–12
    [Google Scholar]
  61. Yokota A. 1989; Taxonomic significance of cellular fatty acid composition in Rhizobium, Bradyrhizobium and Agrobacterium species. IFO Res. Comm. 14:25–39
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-1-84
Loading
/content/journal/ijsem/10.1099/00207713-42-1-84
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error