1887

Abstract

The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-110 medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%). Among the fatty acids or classes of fatty acids that were significantly different in the genera and , and thus of taxonomic value (with ranges in the strains, respectively), were 16:0 (27.39 to 34.72 and 18.50 to 26.10%) and the total saturated, straight-chain, even-carbon fatty acids (class A) (29.06 to 36.61 and 21.06 to 28.62%); in addition, the ratios of class C fatty acids (unsaturated straight-chain fatty acids) to class A fatty acids were significantly different (1.52 to 2.13 and 2.25 to 3.47). On the basis of these parameters, isolate ATCC 29413 has the fatty acid characteristics of a strain and should be considered for reclassification as ; and strain ATCC 27895, which was originally placed in the species , should be retained in the genus

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-2-246
1992-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/2/ijs-42-2-246.html?itemId=/content/journal/ijsem/10.1099/00207713-42-2-246&mimeType=html&fmt=ahah

References

  1. Ben-Amotz A., Tornabene T. G., Thomas W. H. 1985; Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21:72–81
    [Google Scholar]
  2. Bory de St. Vincent J. B. 1822 Anabaena,. 307 Dictionnaire classique d’historie naturelle 1 Rey, Gravier and Baudoin Freres; Paris:
    [Google Scholar]
  3. Bryan L. B., Gardner E. W. 1968; A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl. Microbiol. 16:549–552
    [Google Scholar]
  4. Casano F., Wells J., Van Der Zwet T. 1988; Fatty acid profiles of Erwinia amylovora as influenced by growth medium, physiological age and experimental conditions. J. Phytopathol. 121:267–274
    [Google Scholar]
  5. Castenholz R. W. 1989 Family I. Nostocaceae,. 1783 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Caudales R., Wells J. M. Unpublished data.
  7. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep sea procaryotes. Appl. Environ. Microbiol. 51:730–737
    [Google Scholar]
  8. Desikachary T. V. 1959 Cyanophyta. Indian Council of Agricultural Research; New Delhi, India:
    [Google Scholar]
  9. Doolittle W. F. 1982 Molecular evolution. 307–332 Carr N. G., Whitton B. A.ed The biology of cyanobacteria. Bot. Monogr. 19 University of California Press; Berkeley:
    [Google Scholar]
  10. Fogg G. E., Steward W. D. P., Fay P., Walsby E. 1973 The blue-green algae. 311–342 Academic Press; New York:
    [Google Scholar]
  11. Geitle L. 1932 Cyanophyceae. 827–869 Kolkwitz R.ed Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz 14 Akademische Verlagsgesellschaft; Leipzig, Germany:
    [Google Scholar]
  12. Gillan F. T., Hogg R. W. 1984; A method for the estimation of bacterial biomass and community structure in mangrove-associated sediments. J. Microbiol. Methods 2:275–293
    [Google Scholar]
  13. Golecki J. R., Drews G. 1982 Supramolecular organization and composition of membranes. 125–141 Carr N. G., Whitton B. A.ed The biology of cyanobacteria. Bot. Monogr. 19 University of California Press; Berkeley:
    [Google Scholar]
  14. Johns R. B., Perry G. J. 1977; Lipids of the marine bacterium Flexibacterpolymorphus. Arch. Microbiol. 114:267–671
    [Google Scholar]
  15. Kantz T., Bold H. C. 1969 Phycological studies. IX. Morphological and taxonomic investigations of Nostoc and Anabaena in culture. Publication no. 6924 University of Texas. Austin:
    [Google Scholar]
  16. Kenyon C. N., Rippka R., Stanier R. Y. 1972; Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. MikrobioL 83:216–236
    [Google Scholar]
  17. Lachance M. A. 1980; Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 31:139
    [Google Scholar]
  18. Lechevalier M. P. 1977; Lipids in bacterial taxonomy—a taxonomist’s view. Crit. Rev. Microbiol. 5:109–210
    [Google Scholar]
  19. Margulis L., Walker J., Rambler M. 1976; Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature (London) 264:620–624
    [Google Scholar]
  20. Moss C. W. 1979 Analysis of cellular fatty acids of bacteria by gas-liquid chromatography. 117–122 Jones G. L., Herbert G. A.ed “Legionnaires,” the disease, bacteria and methodology U.S. Department of Health, Education and Welfare; Atlanta:
    [Google Scholar]
  21. Rai A. M. 1990 Cyanobacteria in symbiosis. 1–7 Rai A. N.ed Handbook of symbiotic cyanobacteria CRC Press; Boca Raton, Fla:
    [Google Scholar]
  22. Rippka R. 1988; Recognition and identification of cyanobacteria. Methods Enzymol. 167:28–67
    [Google Scholar]
  23. Rippka R.Pasteur Institute 1990 Personal communication
  24. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1–61
    [Google Scholar]
  25. Sandmann G., Boger P. 1982; Volatile hydrocarbons from photosynthetic membranes containing different fatty acids. Lipids 17:35–41
    [Google Scholar]
  26. Sato N., Murata N. 1981; Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in blue-green algae (cyanobacterium), Anabaena variabilis.. Plant Cell Physiol. 22:1043–1050
    [Google Scholar]
  27. Sato N., Murata N. 1988; Membrane lipids. Methods Enzymol. 167:251–259
    [Google Scholar]
  28. Schopf W., Packer B. 1987; Early Archaean (3.3 billion- to 3.5 billion-years old) microfossils from the Warrawoona Group, Australia. Science 237:70–73
    [Google Scholar]
  29. Stulp B. K., Stam W. T. 1984; Genotypic relationships between strains of Anabaena (Cyanophyceae) and their correlation with morphological affinities. Br. Phycol. J. 19:287–301
    [Google Scholar]
  30. Vaucher J. P. 1803 Histoire des Tremelles. 203 Histoire des Conferves d’Eau Deuce J. J. Paschoud; Geneva:
    [Google Scholar]
  31. Watanabe A. 1959; Distribution of nitrogen-fixing blue-green algae in various areas of South and East Asia. J. Gen. Appl. Microbiol. 5:21–29
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-2-246
Loading
/content/journal/ijsem/10.1099/00207713-42-2-246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error