1887

Abstract

The 16S rRNAs from nine rapidly growing species were partially sequenced by using the dideoxynucleotide-terminated, primer extension method with cDNA generated by reverse transcriptase. The sequences were aligned with 47 16S rRNA or DNA sequences that represented 30 previously described and 5 undescribed species of the genus , and a dendrogram was constructed by using equally weighted distance values. Our results confirmed the phylogenetic separation of the rapidly and slowly growing mycobacteria and showed that the majority of the slowly growing members of the genus represent the most recently evolved organisms. The 24 strains which represented 21 rapidly growing species constituted several sublines, which were defined by the following taxa: (i) and , (ii) , (iii) the cluster, (iv) the cluster, (v) , (vi) , (vii) and , (viii) and , (ix) the cluster, and (x) subsp. . Our phylogenetic analysis confirmed the validity of the phenotypically defined species mentioned above, but our conclusions disagree with most of the conclusions about intrageneric relationships derived from numerical phenetic analyses.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-3-337
1992-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/3/ijs-42-3-337.html?itemId=/content/journal/ijsem/10.1099/00207713-42-3-337&mimeType=html&fmt=ahah

References

  1. Baess I. 1982; Deoxyribonucleic acid relatedness among species of rapidly growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 90:371–375
    [Google Scholar]
  2. Barksdale L., Kim S. 1977; Mycobacterium. Bacteriol. Rev. 41:217–372
    [Google Scholar]
  3. Beaucage S. L., Caruthers M. H. 1981; Deoxynucleoside phosphoramidites: a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22:1859–1862
    [Google Scholar]
  4. Böddinghaus B., Rogall T., Flohr T., Blocker H., Böttger E. 1990; Detection and identification of mycobacteria by amplification of rRNA. J. Clin. Microbiol. 28:1751–1759
    [Google Scholar]
  5. Collins M. D., Smida J., Dorsch M., Stackebrandt E. 1988; Tsukamurella gen. nov. harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus. Int. J. Syst. Bacteriol. 38:385–391
    [Google Scholar]
  6. DeBorde D. C., Naeve C. W., Herlocher M. L., Massab H. F. 1986; Resolution of a common RNA sequencing ambiguity by terminal deoxynucleotidyl transferase. Anal. Biochem. 157:275–282
    [Google Scholar]
  7. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Ridell M., Magnussen M. 1985 Systematic analysis of complex mycobacterial lipids. 237–265 Minnikin D. E., Goodfellow M.ed Chemical methods in bacterial sytematics Academic Press; London:
    [Google Scholar]
  8. Edwards U., Rogall T., Blocker H., Emde M., Böttger E. C. 1990; Isolation and direct sequencing of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843–7853
    [Google Scholar]
  9. Fitch W. M. 1981; A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18:30–37
    [Google Scholar]
  10. Garcia M. J., Tabares E. 1986; Separation of Mycobacterium gadium from other rapidly growing mycobacteria on the basis of DNA homology and restriction endonuclease analysis. J. Gen. Microbiol. 132:2265–2269
    [Google Scholar]
  11. Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J., Pace N. J. 1988; Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170:3584–3592
    [Google Scholar]
  12. Goodfellow M., Wayne L. 1982 Taxonomy and nomenclature. 471–521 Ratledge C., Stanford J.ed The biology of the mycobacteria 1 Academic Press; London:
    [Google Scholar]
  13. Hall R. M., Ratledge C. 1984; Mycobactins as chemotaxonomic characters for some rapidly growing mycobacteria. J. Gen. Microbiol. 130:1883–1892
    [Google Scholar]
  14. Ichiyama S., Shimokata K., Tsukamura M. 1988; Relationships between mycobacterial species and their carotenoid pigments. Microbiol. Immunol. 32:473–479
    [Google Scholar]
  15. Imaeda T., Broslawski G., Imaeda S. 1988; Genomic relatedness among mycobacterial species by nonisotopic blot hybridization. Int. J. Syst. Bacteriol. 38:151–156
    [Google Scholar]
  16. Kazda J., Müller K. Unpublished data.
  17. Kazda J., Stackebrandt E., Smida J., Minnikin D. E., Daffe M., Parlett J. H., Pitulle C. 1990; Mycobacterium cookii sp. nov. Int. J. Syst. Bacteriol. 40:217–223
    [Google Scholar]
  18. Kubica G. P., Baess I., Gordon R. E., Jenkins P. A., Kwapinski J. B. G., McDurmont C. M., Pattyn S. R., Saito H., Silcox V., Stanford J. L., Takeya K., Tsukamura M. 1972; A cooperative numerical analysis of rapidly growing mycobacteria. J. Gen. Microbiol. 73:55–70
    [Google Scholar]
  19. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  20. Levy-Frebault V., Grimont F., Grimont P. A. D., David H. L. 1984; Deoxyribonucleic acid relatedness study of Mycobacterium f allax. Int. J. Syst. Bacteriol. 34:423–425
    [Google Scholar]
  21. Levy-Frebault V., Grimont F., Grimont P. A. D., David H. L. 1986; Deoxyribonucleic acid relatedness study of the Mycobacterium fortuitum-Mycobacterium chelonae complex. Int. J. Syst. Bacteriol. 36:458–460
    [Google Scholar]
  22. Liesack W., Sela S., Bercovier H., Pitulle C., Stackebrandt E. 1991; Complete nucleotide sequence of the Mycobacterium leprae 23S and 5S rRNA genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes. FEBS Lett. 12:114–118
    [Google Scholar]
  23. Minnikin D., Goodfellow M. 1980 Mycolic acid pattern in mycobacterial classification. 159–170 Kubica G. P., Wayne L. G., Good L. S.ed Twenty five years of mycobacterial taxonomy U.S. Department of Health, Education and Welfare; Atlanta:
    [Google Scholar]
  24. Pattyn S. R. 1970; Agglutination of rapidly growing (Runyon’s group IV) mycobacteria. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 215:99–105
    [Google Scholar]
  25. Ridell M., Baker R., Lind A., Ouchterlony Ö. 1979; Immunodiffusion studies of ribosomes in classification of mycobacteria and related taxa. Int. Arch. Allergy Appl. Immunol. 59:162–172
    [Google Scholar]
  26. Ridell M., Goodfellow M. 1983; Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J. Gen. Microbiol. 129:599–611
    [Google Scholar]
  27. Ridell M., Goodfellow M., Minnikin D. E., Minnikin S. M., Hutchinson I. G. 1982; Classification of Mycobacterium farcinogenes and Mycobacterium senegalense by immunodiffusion and thin-layer chromatography of long-chain components. J. Gen. Microbiol. 128:1299–1307
    [Google Scholar]
  28. Rogall T., Flohr T., Böttger E. 1990; Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J. Gen. Microbiol. 136:1915–1920
    [Google Scholar]
  29. Rogall T., Wolters J., Flohr T., Böttger E. C. 1990; Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40:323–330
    [Google Scholar]
  30. Saito H., Gordon R. E., Juhlin J., Kappler W., Kwapinski J. B. G., McDermont C., Pattyn S. R., Runyon E. H., Stanford J. L., Tarnok I., Tasaka H., Tsukamura M., Weiszfeiler J. 1977; Cooperative numerical analysis of rapidly growing mycobacteria. Int. J. Syst. Bacteriol. 27:75–85
    [Google Scholar]
  31. Sattath S., Tversky A. 1977; Additive similarity trees. Psychometrika 42:319–345
    [Google Scholar]
  32. Smida J. 1988; Reverse Transcriptase Sequenzierung von 16S rRNA: Ein Beitrag zur Phylogenie der Ordnung Actinomycetales. Ph.D. thesis Christian-Albrechts-Unversität, Kiel; Federal Republic of Germany:
    [Google Scholar]
  33. Smida J., Kazda J., Stackebrandt E. 1988; Molecular evidence for the relationship of Mycobacterium leprae to slowgrowing pathogenic mycobacteria. Int. J. Lepr. 56:449–454
    [Google Scholar]
  34. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe. J. Gen. Microbiol. 136:37–43
    [Google Scholar]
  35. Stackebrandt E., Liesack W., Witt D. Ribosomal RNA and ribosomal DNA sequence analyses. Gene in press
    [Google Scholar]
  36. Stackebrandt E., Smida J. 1988 The phylogeny of the genus Mycobacterium as determined by 16S rRNA sequences, and development of DNA-probes. 244–250 Okami Y., Beppu T., Ogawara H.ed Biology of actinomycetes Japan Scientific Societies Press; Tokyo:
    [Google Scholar]
  37. Stackebrandt E., Smida J., Collins M. D. 1988; Evidence of phylogenetic heterogeneity within the genus Rhodococus: revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol. 34:341–348
    [Google Scholar]
  38. Stackebrandt E., Smida J., Kazda J. 1989; The primary structure of the 16S rRNA of Mycobacterium leprae: its use in phylogeny and development of DNA probes. Acta LeproL 7:222–225
    [Google Scholar]
  39. Stackebrandt E., Witt D., Kemmerling C., Kroppenstedt R., Liesack W. 1991; Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl. Environ. Microbiol. 57:1468–1477
    [Google Scholar]
  40. Stackebrandt E., Woese C. R. 1981; Towards a phylogeny of the actinomycetes and related organisms. Curr. Microbiol. 5:197–202
    [Google Scholar]
  41. Stahl D. A., Urbance J. W. 1990; The division between fast- and slow-growing species corresponds to the natural relationships among the mycobacteria. J. Bacteriol. 172:116–124
    [Google Scholar]
  42. Suzuki Y., Nagata A., Ono Y., Yamada T. 1988; Complete nucleotide sequence of the 16S rRNA gene of Mycobacterium bovis BCG. J. Bacteriol. 170:2886–2889
    [Google Scholar]
  43. Takeya K., Tokiwa H. 1972; Mycobacteriocin classification of rapidly growing mycobacteria. J. Med. Microbiol. 5:171–182
    [Google Scholar]
  44. Thirup S., Larsen N. E. 1990; ALMA, an editor for large sequence alignments. Proteins 7:291–295
    [Google Scholar]
  45. Tsukamura M. 1966; Adansonian classification of mycobacteria. J. Gen. Microbiol. 45:253–273
    [Google Scholar]
  46. Tsukamura M. 1981; Some considerations regarding the classification and identification of mycobacteria. Rev. Infect. Dis. 3:829–840
    [Google Scholar]
  47. Tsukamura M. 1981; A review of the methods of identification and differentiation of mycobacteria. Rev. Infect. Dis. 3:841–861
    [Google Scholar]
  48. Tsukamura M., Mizuno S. 1977; Numerical analysis of relationships among rapidly growing scotochromogenic mycobacteria. J. Gen. Microbiol. 98:571–577
    [Google Scholar]
  49. Tsukamura M., Mizuno S. 1978; A further study on the method of identification of mycobacteria by thin-layer chromatography after incubation with 35S-methionine. Kekkadi 54:1527
    [Google Scholar]
  50. Tsukamura M., Mizuno S., Tsukamura S., Tsukamura J. 1979; Comprehensive numerical classification of 369 strains of Mycobacterium, Rhodococcus, and Nocardia. Int. J. Syst. Bacteriol. 29:110–129
    [Google Scholar]
  51. Wayne L. G. 1984 Mycobacterial speciation. 25–65 Kubica G. P., Wayne L. G.ed The mycobacteria Marcel Dekker, Inc.; New York:
    [Google Scholar]
  52. Wayne L. G., Kubica G. P. 1986 Family Mycobacteriaceae Chester 1897, 63. 1436–1457 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  53. Woese C. R., Gutell R., Gupta R., Noller H. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal nucleic acids. Microbiol. Rev. 47:621–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-3-337
Loading
/content/journal/ijsem/10.1099/00207713-42-3-337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error