1887

Abstract

The relationships of 77 aerotolerant strains that were originally identified as (now [P. Vandamme, E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley, Int. J. Syst. Bacteriol. 41:88-103, 1991]) and 6 reference strains belonging to the taxa , and “ were studied by using a polyphasic approach, in which we performed DNA-rRNA hybridizations, DNA-DNA hybridizations, a numerical analysis of whole-cell protein patterns after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an analysis of cellular fatty acid compositions, and a phenotypic analysis and determined DNA base ratios. Our results indicate that “” should be transferred to the genus as comb. nov., as was suggested by Kiehlbauch and coworkers (J. A. Kiehlbauch, D. J. Brenner, M. A. Nicholson, C. N. Baker, C. M. Patton, A. G. Steigerwalt, and I. K. Wachsmuth, J. Clin. Microbiol. 29:376-385, 1991). A rapid screening of all strains in which we used the sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique revealed five major groups, which were identified by using DNA-DNA hybridization data as (two distinct electrophoretic subgroups), , and a new species, for which we propose the name The phylogenetic position within rRNA superfamily VI was established for each species. strains and strains belonging to one of the electrophoretic subgroups of had similar fatty acid contents. An analysis of fatty acid compositions allowed clear-cut differentiation of all of the other groups. All of the species could be distinguished by using classical phenotypic tests, although erroneous identifications due to a shortage of clear-cut differentiating tests could occur.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-3-344
1992-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/3/ijs-42-3-344.html?itemId=/content/journal/ijsem/10.1099/00207713-42-3-344&mimeType=html&fmt=ahah

References

  1. Barrett T. J., Patton C. M., Morris G. K. 1988; Differentiation of Campylobacter species using phenotypic characterization. Lab. Med. 19:96–102
    [Google Scholar]
  2. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  4. De Ley J., De Smedt J. 1975; Improvements on the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  5. Ellis W. A., Neill S. D., O’Brien J. J., Ferguson H. W., Hanna J. 1977; Isolation of Spirillum/Vibrio-lfke. organisms from bovine fetuses. Vet. Rec. 100:451–452
    [Google Scholar]
  6. Ellis W. A., Neill S. D., O’Brien J. J., Hanna J. 1978; Isolation of Spirillum-’ike organisms from pig fetuses. Vet. Rec. 102:106
    [Google Scholar]
  7. Gill K. P. W. 1983; Aerotolerant Campylobacter strain isolated from a bovine preputial sheath washing. Vet. Rec. 112:459
    [Google Scholar]
  8. Goossens H., De Boeck M., Cogniau H., Vlaes L., Van den Borre C., Butzler J.-P. 1986; Modified selective medium for the isolation of Campylobacter spp. from feces: comparison with Preston medium, a blood-free medium, and a filtration system. J. Clin. Microbiol. 24:840–843
    [Google Scholar]
  9. Goossens H., Pot B., Vlaes L., Van den Borre C., Van den Abbeele R., Van Naelten C., Levy J., Cogniau H., Marbehant P., Verhoef J., Kersters K., Butzler J.-P., Vandamme P. 1990; Characterization and description of “Campylobacter upsaliensis” isolated from human feces. J. Clin. Microbiol. 28:1039–1046
    [Google Scholar]
  10. Higgins R., Degre R. 1979; Isolation of Spirillum-like organisms from pig and bovine fetuses. Vet. Rec. 104:262–263
    [Google Scholar]
  11. Higgins R., Degre R. 1979; Spirillum-like organism isolated from pig and bovine fetuses. Vet. Rec. 104:559
    [Google Scholar]
  12. Kiehlbauch J. A., Brenner D. J., Nicholson M. A., Baker C. N., Patton C. M., Steigerwalt A. G., Wachsmuth I. K. 1991; Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J. Clin. Microbiol. 29:376–385
    [Google Scholar]
  13. Kiehlbauch J. A., Plikaytis B. D., Swaminathan B., Cameron D. N., Wachsmuth I. K. 1991; Restriction fragment length polymorphisms in the ribosomal genes for species identification and subtyping of aerotolerant Campylobacter species. J. Clin. Microbiol. 29:1670–1676
    [Google Scholar]
  14. Korn-Wendisch F., Kempf A., Grund E., Kroppenstedt R. M., Kutzner H. J. 1989; Transfer of Faenia rectivirgula Kurup and Agre 1983 to the genus Saccharopolyspora Lacey and Goodfellow 1975, elevation of Saccharopolyspora hirsuta subsp. taberi Labeda 1987 to species level, and emended description of the genus Saccharopolyspora. Int. J. Syst. Bacteriol. 39:430–441
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  16. Lambert M. A., Patton C. M., Barrett T. J., Moss C. W. 1987; Differentiation of Campylobacter and Campylobacter-like organisms by cellular fatty acid composition. J. Clin. Microbiol. 25:706–713
    [Google Scholar]
  17. Logan E. F., Neill S. D., Mackie D. P. 1982; Mastitis in dairy cows associated with an aerotolerant Campylobacter. Vet. Rec. 110:229–230
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  19. McClung C. R., Patriquin D. G., Davis R. E. 1983; Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina altemiflora Loisel. Int. J. Syst. Bacteriol. 33:605–612
    [Google Scholar]
  20. Moss C. W., Lambert-Fair M. A. 1989; Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. J. Clin. Microbiol. 27:1467–1470
    [Google Scholar]
  21. Neill S. D., Campbell J. N., O’Brien J. J., Weatherup S. T. C., Ellis W. A. 1985; Taxonomic position of Campylobacter cryaerophila sp. nov. Int. J. Syst. Bacteriol. 35:342–356
    [Google Scholar]
  22. Neill S. D., Ellis W. A., O’Brien J. J. 1978; The biochemical characteristics of Campylobacter-like organisms from cattle and pigs. Res. Vet. Sci. 25:368–372
    [Google Scholar]
  23. Neill S. D., Ellis W. A., O’Brien J. J. 1979; Designation of aerotolerant Campylobacter-like organisms from porcine and bovine abortions to the genus Campylobacter. Res. Vet. Sci. 27:180–186
    [Google Scholar]
  24. Neill S. D., O’Brien J. J., Ellis W. A. 1980; The isolation of aerotolerant Campylobacter. Vet. Rec. 106:152–153
    [Google Scholar]
  25. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  26. Sokal R. R., Sneath P. H. A. 1963 Principles of numerical taxonomy. W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  27. Stead D. E. 1989; Grouping of Xanthomonas campestris pathovars of cereals and grasses by fatty acid profiling. Bull. OEPP (Organ. Eur. Mediterr. Prot. Plant.)/EPPO (Eur. Mediterr. Plant Prot. Organ.) Bull. 19:57–68
    [Google Scholar]
  28. Tee W., Baird R., Dyall-Smith M., Dwyer B. 1988; Campylobacter cryaerophila isolated from a human. J. Clin. Microbiol. 26:2469–2473
    [Google Scholar]
  29. Thompson L. M. III, Smibert R. M., Johnson J. L., Krieg N. R. 1988; Phylogenetic study of the genus Campylobacter. Int. J. Syst. Bacteriol. 38:190–200
    [Google Scholar]
  30. Vandamme P., De Ley J. 1991; Proposal for a new family, Campylobacteraceae. Int. J. Syst. Bacteriol. 41:451–455
    [Google Scholar]
  31. Vandamme P., Falsen E., Pot B., Hoste B., Kersters K., De Ley J. 1989; Identification of EF group 22 Campylobacters from gastroenteritis cases as Campylobacter concisus. J. Clin. Microbiol. 27:1775–1781
    [Google Scholar]
  32. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. 1991; Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41:88–103
    [Google Scholar]
  33. Vandamme P., Lauwers S. Unpublished data.
  34. Vandamme P., Pot B., Falsen E., Kersters K., De Ley J. 1990; Intra- and interspecific relationships of veterinary Campylobacters revealed by numerical analysis of electrophoretic protein profiles and DNA:DNA hybridizations. Syst. Appl. Microbiol. 13:295–303
    [Google Scholar]
  35. Vandamme P., Pot B., Kersters K. 1991; Differentiation of Campylobacters and Campylobacter-like organisms by numerical analysis of one-dimensional electrophoretic protein patterns. Syst. Appl. Microbiol. 14:57–66
    [Google Scholar]
  36. Vauterin L., Swings J., Kersters K. 1991; Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. J. Gen. Microbiol. 137:1677–1687
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-3-344
Loading
/content/journal/ijsem/10.1099/00207713-42-3-344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error