1887

Abstract

The generic position of 14 strains of gram-positive bacteria able to use methanol as a growth substrate was determined. All are obligately aerobic, thermotolerant organisms that are able to grow at temperatures of 35 to 60°C. Nine of the strains produce oval spores at a subterminal-to-central position in slightly swollen rod-shaped cells. DNA-DNA hybridization studies, 5S rRNA sequence analysis, and physiological characteristics revealed that all 14 strains cluster as a well-defined group and form a distinct new genospecies. Analysis of the 16S and 5S rRNA sequences indicated that this new species is distinct from but closely related to and . The name proposed for this new species is . The type strain, PB1, has been deposited in the National Collection of Industrial and Marine Bacteria as NCIMB 13113.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-42-3-439
1992-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/42/3/ijs-42-3-439.html?itemId=/content/journal/ijsem/10.1099/00207713-42-3-439&mimeType=html&fmt=ahah

References

  1. Al-Awadhi N. 1989; The characterization and physiology of some thermotolerant and thermophilic solvent-utilizing bacteria. Ph.D. thesis Swiss Federal Institute of Technology; Zurich:
    [Google Scholar]
  2. Al-Awadhi N., Egli T., Hamer G. 1988; Growth characteristics of a thermotolerant methylotrophic Bacillus sp. (NCIMB 12522) in batch culture. Appl. Microbiol. Biotechnol. 29:485–493
    [Google Scholar]
  3. Al-Awadhi N., Egli T., Hamer G., Mason C. A. 1990; The process utility of thermotolerant methylotrophic bacteria. I. An evaluation in chemostat culture. Biotechnol. Bioeng. 36:816–820
    [Google Scholar]
  4. Al-Awadhi N., Egli T., Hamer G., Mason C. A. 1990; The process utility of thermotolerant methylotrophic bacteria. II. An evaluation of transient responses. Biotechnol. Bioeng. 36:821–825
    [Google Scholar]
  5. Al-Awadhi N., Egli T., Hamer G., Wehrli E. 1989; Thermotolerant and thermophilic solvent-utilizing methylotrophic, aerobic bacteria. Syst. Appl. Microbiol. 11:207–216
    [Google Scholar]
  6. Anthony C. 1982 The biochemistry of methylotrophs. Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  7. Arfman N., de Vries K. J., Moezelaar H. R., Attwood M. M., Robinson G. K., van Geel M., Dijkhuizen L. 1991; Regulation of methylotrophic metabolism in thermotolerant Bacillus strains during growth in batch and continuous cultures. Arch. Microbiol. 157:272–278
    [Google Scholar]
  8. Arfman N., Van Beeumen J., de Vries G. E., Harder W., Dijkhuizen L. 1991; Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. J. Biol. Chem. 266:3955–3960
    [Google Scholar]
  9. Arfman N., Watling E. M., Clement W., van Oosterwijk R. J., de Vries G. E., Harder W., Attwood M. M., Dijkhuizen L. 1989; Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch. Microbiol. 152:280–288
    [Google Scholar]
  10. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. 1991; Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343–346
    [Google Scholar]
  11. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13:202–206
    [Google Scholar]
  12. Braunegg G., Sonnleitner B., Lafferty R. M. 1978; A rapid gas chromatographic method for the determination of poly-fihydroxy-butyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6:29–37
    [Google Scholar]
  13. Bringer S., Hartner T., Poralla K., Sahm H. 1985; Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch. Microbiol. 140:312–316
    [Google Scholar]
  14. Brooke A. G., Attwood M. M., Tempest D. W. 1990; Metabolic fluxes during the growth of thermotolerant methylotrophic Bacillus strains in methanol-sufficient chemostat cultures. Arch. Microbiol. 153:591–595
    [Google Scholar]
  15. Brooke A. G., Watling E. M., Attwood M. M., Tempest D. W. 1989; Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains. Arch. Microbiol. 151:268–273
    [Google Scholar]
  16. Bulygina E. S., Galchenko V. F., Govorukhina N. I., Netrusov A. I., Nikitin D. I., Trotsenko Y. A., Chumakov K. M. 1990; Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. J. Gen. Microbiol. 136:441–446
    [Google Scholar]
  17. Chen E. Y., Seeburg P. H. 1985; Supercoiled sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  18. Chumakov K. M. 1987; Evolution of nucleotide sequences. Sov. Sci. Rev. Sect. D Biol. Rev. 7:51–94
    [Google Scholar]
  19. Colby J., Zatman L. J. 1975; Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs. Biochem. J. 148:505–511
    [Google Scholar]
  20. Cowan S. T. 1974 Cowan and Steel’s manual for the identification of medical bacteria, 2nd. Cambridge University Press; Cambridge:
    [Google Scholar]
  21. De Borde D. C., Neave C. W., Herlocher M. L., Massab H. F. 1986; Resolution of a common sequencing ambiguity by terminal deoxynucleotidyl transferase. Anal. Biochem. 157:275–282
    [Google Scholar]
  22. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 2:133–142
    [Google Scholar]
  23. Dijkhuizen L., Arfman N. 1990; Methanol metabolism in thermotolerant methylotrophic Bacillus species. FEMS Microbiol. Rev. 87:215–220
    [Google Scholar]
  24. Dijkhuizen L., Arfman N., Attwood M. M., Brooke A. G., Harder W., Watling E. M. 1988; Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains. FEMS Microbiol. Lett. 52:209–214
    [Google Scholar]
  25. Dijkhuizen L., Hansen T. A., Harder W. 1985; Methanol, a potential feedstock for biotechnological processes. Trends Biotechnol. 3:262–267
    [Google Scholar]
  26. Embley T. M., Smida J., Stackebrandt E. 1988; Reverse transcriptase sequencing of ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta, three cell wall type IV organisms which lack mycolic acids. J. Gen. Microbiol. 134:961–966
    [Google Scholar]
  27. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  28. Gordon R. E., Haynes W. C., Pang C. H.-N. 1973 The genus Bacillus (Agricultural handbook no. 427). U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  29. Govorukhina N. I., Trotsenko Y. A. 1989 Isolation and characterization of a thermotolerant methanol-utilizing Bacillus strains. Abstr. 6th Int. Symp. Microb. Growth C\ Compounds, abstr. P108 University of Groningen; The Netherlands:
    [Google Scholar]
  30. Heitzer A., Al-Awadhi N., Hamer G. 1989; Some effects of heat shocks on bacterial growth. Appl. Microbiol. Biotechnol. 30:408–414
    [Google Scholar]
  31. Hitzman D. O.March 1976 U.S. patent 3,981,774
  32. Hori H. 1975; Evolution of 5S rRNA. J. Mol. Evol. 7:75–88
    [Google Scholar]
  33. Kilpper R., Buhl U., Schleifer K.-H. 1980; Nucleic acid homology studies between Peptococcus saccharolyticus and various anaerobic and facultative anaerobic Gram-positive cocci. FEMS Microbiol. Lett. 8:205–210
    [Google Scholar]
  34. Kilpper-Balz R., Williams B. L., Liitticken R., Schleifer K.-H. 1984; Relatedness of “Streptococcus milleri” with Streptococcus anginosus and Streptococcus constellatus. Syst. Appl. Microbiol. 5:494–500
    [Google Scholar]
  35. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  36. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  37. Meyer S. A., Schleifer K.-H. 1975; Rapid procedure for the approximate determination of the deoxyribonucleic acid base composition of micrococci, staphylococci, and other bacteria. Int. J. Syst. Bacteriol. 36:271–280
    [Google Scholar]
  38. Ourisson G., Rohmer M., Poralla K. 1987; Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41:301–333
    [Google Scholar]
  39. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134:1847–1882
    [Google Scholar]
  40. Rossler D., Ludwig W., Schleifer K.-H., Lin C., McGill T. J., Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E. 1991; Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Syst. Appl. Microbiol. 14:266–269
    [Google Scholar]
  41. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. G., Ehrlich E. H. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  42. Schendel F. J., Bremmon C. E., Flickinger M. C., Guettler M., Hanson R. S. 1990; L-Lysine production at 50°C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Appl. Environ. Microbiol. 56:963–970
    [Google Scholar]
  43. Schleifer K.-H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  44. Sneath P. H., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman & Co.; San Francisco:
    [Google Scholar]
  45. Snedecor B., Cooney C. L. 1974; Thermophilic mixed cultures of bacteria using methanol for growth. Appl. Microbiol. 27:1112–1117
    [Google Scholar]
  46. Suzuki T., Yamani T., Shimizu S. 1986; Mass production of poly-P-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol. 24:370–374
    [Google Scholar]
  47. Vonck J., Arfman N., de Vries G. E., Van Beeumen J., van Bruggen E. F. J., Dijkhuizen L. 1991; Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. Cl. J. Biol. Chern. 266:3949–3954
    [Google Scholar]
  48. Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E. 1990; PCR amplification of 16s rDNA from lyophilized cell culture facilitates studies in molecular systematics. Curr. Microbiol. 21:325–327
    [Google Scholar]
  49. Wolters J., Erdmann V. A. 1988; Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Res. 16:r1–r70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-42-3-439
Loading
/content/journal/ijsem/10.1099/00207713-42-3-439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error