1887

Abstract

In previous studies, gram-positive bacteria which grew rapidly with peptides or an amino acid as the sole energy source were isolated from bovine rumina. Three isolates, strains C, F (T = type strain), and SR, were considered to be ecologically important since they produced up to 20-fold more ammonia than other ammonia-producing ruminal bacteria. On the basis of phenotypic criteria, the taxonomic position of these new isolates was uncertain. In this study, the 16S rRNA sequences of these isolates and related bacteria were determined to establish the phylogenetic positions of theorganisms. The sequences of strains C, F, and SR and reference strains of , and were determined by using a modified Sanger dideoxy chain termination method. Strain C, a large coccus purported to belong to the genus , was closely related to , with a level of sequence similarity of 99.6%. Strain SR, a heat-resistant, short, rod-shaped organism, was closely related to , with a level of sequence similarity of 99.9%. However, strain F, a heat-resistant, pleomorphic, rod-shaped organism, was only distantly related to some clostridial species and . On the basis of the sequence data, it was clear that strain F warranted designation as a separate species. The closest known relative of strain F was (level of similarity, only 90.6%). Additional strains that are phenotypically similar to strain F were isolated in this study. On the basis of phenotypic and phylogenetic differences, we believe that strain F represents a new species of the genus , for which we propose the name .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-1-107
1993-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/1/ijs-43-1-107.html?itemId=/content/journal/ijsem/10.1099/00207713-43-1-107&mimeType=html&fmt=ahah

References

  1. Bladen H. A., Bryant M. P., Doetsch R. N. 1961; A study of bacterial species from the rumen which produce ammonia from protein hydrolysate. Appl. Microbiol 9:175–180
    [Google Scholar]
  2. Bryant M. P. 1959; Bacterial species of the rumen. Bacteriol. Rev. 23:125–153
    [Google Scholar]
  3. Bryant M. P., Robinson I. M. 1961; An improved nonselective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy sci. 4:1446–1455
    [Google Scholar]
  4. Canard B., Gamier T., Lafay B., Cristen R., Cole S. T. 1992; Phylogenetic analysis of the pathogenic anaerobe Clostridium perfringens using the 16S rRNA nucleotide sequence. Int. J. Syst. Bacteriol 42:312–314
    [Google Scholar]
  5. Cato E. P., Georges W. L., Finegold S. M. 1986; Genus Clostridium Prazmowski 1880, 23AL. p. 1141–1200 In Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Cato E. P., Stackebrandt E. 1989; Taxonomy and phylogeny. p. 1–26 In Minton N. P., Clarke D. J. (ed.) Clostridia. Plenum Press; New York:
    [Google Scholar]
  7. Chen G., Russell J. B. 1988; Fermentation of peptides and amino acids by a monensin-sensitive ruminal peptostreptococcus. Appl. Environ. Microbiol 54:2742–2749
    [Google Scholar]
  8. Chen G., Russell J. B. 1989; More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol 55:1052–1057
    [Google Scholar]
  9. Chen G., Russell J. B. 1989; Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal peptostreptococcus. Appl. Environ. Microbiol 55:2658–2663
    [Google Scholar]
  10. Chen G., Russell J. B. 1990; Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium. Appl. Environ. Microbiol. 56:2186–2192
    [Google Scholar]
  11. Chen M., Wolin M. J. 1979; Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 38:72–78
    [Google Scholar]
  12. Dennis S. M., Nagaraja T. G., Bartley E. E. 1981; Effects of lasalocid or monensin on lactate-producing and using bacteria. Appl. Environ. Microbiol 52:418–426
    [Google Scholar]
  13. Dinius D. A., Simpson M. E., Marsh P. B. 1976; Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. J. Anim. sci. 42:229–234
    [Google Scholar]
  14. Hino T., Russell J. B. 1985; The effect of reducing agent dispoand NADH/NAD on the deamination of amino acids by intact and cell-free extracts of rumen microorganisms. Appl. Environ. Microbiol 50:1368–1374
    [Google Scholar]
  15. Hino T., Russell J. B. 1986; Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro. J. Anim. sci. 64:261–270
    [Google Scholar]
  16. Hungate R. E. 1966; The rumen and its microbes. Academic Press; New York:
    [Google Scholar]
  17. Hungate R. E. 19751; The rumen microbial ecosystem. Annu. Rev. Ecol. Syst. 6:39–66
    [Google Scholar]
  18. Hungate R. E., Bryant M. P., Mah R. A. 1964; The rumen bacteria and protozoa. Annu. Rev. Microbiol. 18:131–166
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. p. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism vol 3: Academic Press, Inc.; New York:
    [Google Scholar]
  20. Lane G. H., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. sci. USA 821:6955–6959
    [Google Scholar]
  21. Moore L. V. Personal communication
  22. Moore W. E. C. Personal communication
  23. Moore W. E. C., Hash D. E., Holdeman L. V., Cato E. P. 1980; Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras. Appl. Environ. Microbiol. 39:900–907
    [Google Scholar]
  24. Moore W. E. C., Moore L. V. 1986; Genus Eubacterium Prevot 1938,294AL. p. 1353–1373 In Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Pace B., Matthews E. A., Johnson K. D., Cantor C. R., Pace N. R. 1982; Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc. Natl. Acad. sci. USA 79:36–40
    [Google Scholar]
  26. Paster B. J., Dewhirst F. E. 1988; Phylogeny of Campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ure- olyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol 38:56–62
    [Google Scholar]
  27. Russell J. B. 1983; Fermentation of peptides by Bacteroides ruminicola B14. Appl. Environ. Microbiol. 45:1566–1574
    [Google Scholar]
  28. Russell J. B. 1984; Factors influencing competition and composition of the rumen bacterial flora. p. 313–345 In Gilchrist F. M. C., Mackie R. I. (ed.) Herbivore nutrition in the subtropics and tropics science Press; Craighall, South Africa:
    [Google Scholar]
  29. Russell J. B., Strobel H. J., Chen G. 1988; Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol. 54:872–877
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  31. Stewart C. S., Bryant M. P. 1988; The rumen bacteria. p. 21–75 In Hobson P. N. (ed.) The rumen microbial ecosystem Elsevier Applied science; London:
    [Google Scholar]
  32. Van Kessel J. A. S., Russell J. B. 1992; Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium. Appl. Environ. Microbiol. 58:969–975
    [Google Scholar]
  33. Weizenegger M., Neumann M., Stackebrandt E., Weiss N., Ludwig W. 1992; Eubacterium alctolyticum phylogenetically groups with Eubacterium limosum, Acetobacterium woodii and Clostridium barkeri.. Syst. Appl. Microbiol. 15:32–36
    [Google Scholar]
  34. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  35. Zhao H., Yang D., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int. J. Syst. Bacteriol. 40:40–44
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-1-107
Loading
/content/journal/ijsem/10.1099/00207713-43-1-107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error