1887

Abstract

Two thermophilic, anaerobic, xylan-degrading bacteria, strains B6A-RI (T = type strain) and LX-11, were isolated from Frying Pan Springs in Yellowstone National Park. These organisms grew chemoorganotrophically by utilizing xylan and starch but not cellulose, as well as a number of di- and monosaccharides, including glucose and xylose. Both organisms had the same optimum temperature and pH for growth (60°C and pH 6.0). The fermentation products included acetate, ethanol, lactate, CO, and H. Both organisms were rod shaped and deposited sulfur on their cells. The major difference between the two isolates was in spore formation; strain LX-11 sporulated, whereas strain B6A-RI were compared with other thermophilic, anaerobic, xylan-degrading bacteria by performing DNA-DNA hybridizations and total protein analyses in order to determine the relationships of these organisms. Three different groups were identified, and new taxonomic assignments are proposed. LQRI was least closely related to the other seven strains studied and is placed in group I, retaining its original taxonomic assignment. 4B and new isolates B6A-RI are closely related and fall into group II, for which the new genus is proposed. Isolate LX-11 is designated sp. nov., and isolate B6A-RI is designated sp. nov. 4B (originally ) is the type strain of the type species of the genus. Group III strains are placed in the genus ; this group includes JW200, 39E and E100-69, and HTD4. HTD4 is renamed comb. nov. 39E is nearly identical to JW200, and these organisms are considered members of the same species. Therefore, 39E is renamed 39E; strain JW200 is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-1-41
1993-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/1/ijs-43-1-41.html?itemId=/content/journal/ijsem/10.1099/00207713-43-1-41&mimeType=html&fmt=ahah

References

  1. Bateson M. M., Wiegel J., Ward D. M. 1989; Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats. Syst. Appl. Microbiol.. Syst. Appl. Microbiol 12:1–7
    [Google Scholar]
  2. Biely P. 1985; Microbial xylanolytic systems. Trends Biotechnol 3:286–290
    [Google Scholar]
  3. Brock T. D. 1986; Introduction: an overview of the thermophiles. p. 1–16 In Brock T. D. (ed.) Thermophiles: general, molecular, and applied microbiology—1977 John Wiley & Sons; New York:
    [Google Scholar]
  4. Cato E. P., Stackebrandt E. 1989; Taxonomy and phylogeny. p. 1–26 In Minton N. P., Clark D. J. (ed.) Clostridia Plenum Press; New York:
    [Google Scholar]
  5. Cook G. M., Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst. Appl. Microbiol 14:240–244
    [Google Scholar]
  6. Dicks L. M. T., van Vuuren H. J. J., Dellaglio F. 1990; Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA-DNA hybridization. J. Bacteriol 40:83–91
    [Google Scholar]
  7. Dzink J. L., Sheenan M. T., Socransky S. S. 1990; Proposalof three subspecies of Fusobacteriurn nucleaturn Knorr 1922: Fusobacterium nucleaturn subsp. nucleturn subsp. nov., comb. nov.; Fusobacteriurn nucleaturn subsp.polyrnorphurn subsp. nov., nom. rev., comb. nov.; and Fusobacteriurn nucleaturn subsp. vincentii subsp. nov., nom. rev., comb. nov.. Int. J. Syst. Bacteriol 40:74–78
    [Google Scholar]
  8. Goodwin S., Zeikus J. G. 1987; Physiological adaptations of anaerobic bacteria to tow pH: metabolic control of proton motive force in Sarcina ventriculi.. J. Bacteriol 169:2150–2157
    [Google Scholar]
  9. Hollaus F., Sleytr U. 1972; On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch. Microbiol 86:129–146
    [Google Scholar]
  10. Hyun H. H., Zeikus J. G. 1985; General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum.. Appl. Environ. Microbiol 49:1168–1173
    [Google Scholar]
  11. Johnson J. L. 1981; Genetic characterization. p. 450–472 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  12. Kondratieva E. N., Zacharova E. V., Duda V. I., Krivenko V. V. 1989; Thermoanaerobium lactoethylicum spec. nov., a new anaerobic bacterium from a hot spring of Kamchatka. Arch. Microbiol 151:117–122
    [Google Scholar]
  13. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  14. Lamed R., Bayer E., Saha B. C., Zeikus J. G. 1988; Biotechnological potential of enzymes from unique thermophiles. p. Durand G., Bobichon L., Florent J. (ed.) Proceedings of the 8th International Biotechnology Symposium The French Society for Microbiology; Paris:
    [Google Scholar]
  15. Lamed R., Zeikus J. G. 1980; Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii.. J. Bacteriol 144:569–578
    [Google Scholar]
  16. Lee C., Saha B. C., Zeikus J. G. 1990; Characterization of Thermoanaerobacter glucose isomerase in relation to sacchari- dase synthesis and development of single-step processes for sweetenerproduction.. Appl. Environ. Microbiol 56:2895–2901
    [Google Scholar]
  17. Lowe S. E., Pankratz H. S., Zeikus J. G. 1989; Influence of pH extremes on sporulation and ultrastructure of Sarcina ventriculi.. J. Bacteriol 171:3775–3781
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  19. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  21. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31:426–428
    [Google Scholar]
  22. Morag E., Bayer E., Lamed R. 1990; Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol 172:6098–6105
    [Google Scholar]
  23. Ng T. K. 1982; The physiology and biochemistry of cellulose degradation by Clostridium thermocellum.. Ph.D. thesis University of Wisconsin; Madison:
    [Google Scholar]
  24. Ng T. K., Ben-Bassat A., Zeikus J. G. 1981; Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol 41:1337–1343
    [Google Scholar]
  25. Paice M. G., Bernier R. Jr., Jurasek L. 1988; Viscosityenhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. Bioeng 32:235–239
    [Google Scholar]
  26. Paice M. G., Jurasek L. 1984; Removing hemicellulose from pulps by specific enzymic hydrolysis. J. Wood Chem. Technol 4:187–198
    [Google Scholar]
  27. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  28. Saha B. C., Lamed R., Lee C.-Y., Mathupala S. P., Zeikus J. G. 1990; Characterization of an endo-acting amylopullula- nase from Thermoanaerobacter sp. strain B6A Appl. Environ. Microbiol 56:881–886
    [Google Scholar]
  29. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J. Gen. Microbiol 129:1149–1158
    [Google Scholar]
  30. Schink B., Zeikus J. G. 1983; Characterization of pecti- nolytic enzymes of Clostridium thermosulfurogenes. FEMS Microbiol. Lett 17:295–298
    [Google Scholar]
  31. Schmid U., Giesel H., Schoberth S. M., Sahm H. 1986; Thermoanaerobacter finnii spec, nov., a new ethanologenic sporogenous bacterium. Syst. Appl. Microbiol 8:80–85
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1981; General characterization. p. 409–443 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  33. Weimer P. J. 1985; Thermophilic anaerobic fermentation of hemicellulose and hemicellulose-derived aldose sugars by Ther- moanaerobacter strain B6A. Arch. Microbiol 143:130–136
    [Google Scholar]
  34. Weimer P. J., Wagner L. W., Knowlton S., Ng T. K. 1984; Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids. Arch. Microbiol 138:31–36
    [Google Scholar]
  35. Wiegel J., Carrara L. H., Mothershed C. P., Puls J. 1983; Production of ethanol from biopolymers by anaerobic, thermophilic, and extreme thermophilic bacteria. II. Thermoanaerobacter ethanolicus JW200T and its mutants in batch cultures and resting cell experiments. Biotechnol. Bioeng. Symp 13:193–205
    [Google Scholar]
  36. Wiegel J., Ljungdahl L. G. 1981; Thermoanaerobacter ethanolicus gen nov., spec, nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol 128:343–348
    [Google Scholar]
  37. Wiegel J., Ljungdahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuncum. J. Bacteriol 139:800–810
    [Google Scholar]
  38. Wiegel J., Mothershed C. P., Puls J. 1985; Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl. Environ. Microbiol 49:656–659
    [Google Scholar]
  39. Wiegel J. K. W. 1986; Genus Thermoanaerobacter. p. 1379–1383 In Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 2 The Williams & Wilkins Co.,; Baltimore:
    [Google Scholar]
  40. Zeikus J. G. 1979; Thermophilic bacteria: ecology, physiology, and technology. Enzyme Microb. Technol 1:243–252
    [Google Scholar]
  41. Zeikus J. G., Ben-Bassat A., Hegge P. W. 1980; Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol 143:432–440
    [Google Scholar]
  42. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoor- ganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol 122:41–48
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-1-41
Loading
/content/journal/ijsem/10.1099/00207713-43-1-41
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error