1887

Abstract

Abstract

DNA-DNA hybridization was used to determine the levels of genomic relatedness of the three species of “false neisseriae,” and The reference strains of these species exhibited high levels of intraspecies relatedness (93 to 100% for 79 to 100% for and 68 to 100% for but low levels of interspecific relatedness (less than 34%) to each other and to various species belonging to the β subclass of the and or to the subclass subsp. subsp. and However, the levels of DNA-DNA hybridization for the three species of “false neisseriae” were significantly higher with the species belonging to the γ subclass (average, 13.7%) than with the species belonging to the β subclass (average, 4.5%). These data suggest that and are three separate genomic species in the γ subclass. An ascendant hierarchical classification based only on fatty acid profiles distinguished four main classes containing (i) most of the “classical moraxellae,” the “false neisseriae,” and (ii) only spp., (iii) and “misnamed moraxellae” ( and and (iv) the “true neisseriae,” the three species, and Fatty acids that distinguish these four classes were identified. The fatty acid profiles of the two strains of which we studied are not very similar to the profiles of the other taxa. Our results support the hypothesis that the three species of “false neisseriae,” the “classical moraxellae,” and spp. should be included in the same family.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-2-210
1993-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/2/ijs-43-2-210.html?itemId=/content/journal/ijsem/10.1099/00207713-43-2-210&mimeType=html&fmt=ahah

References

  1. Abalain M. L., Casin I., Chambon J., Chanal C., Dutilh B., Feiten A., Guibourdenche M., Le Faou A., Meyran M., Pean Y., Pinon G., Prere M. F., Riou J. Y., Thabaut A. 1985; Transport et conservation des souches de Neisseria. Med. Mal. Infect. 9bis:495–498
    [Google Scholar]
  2. Berger U. 1962; Ueber das Vorkommen von Neisserien bei einigen Tieren. Z. Hyg. Infektionskr. 148:445–457
    [Google Scholar]
  3. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int. J. Syst. Bacteriol. 36:228–240
    [Google Scholar]
  4. Bøvre K. 1979; Proposal to divide the genus Moraxella Lwoff 1939 emend. Henriksen and B0vre 1968 into two subgenera, subgenus Moraxella (Lwoff 1939) B0vre 1979 and subgenus Branhamella (Catlin 1970) B0vre 1979. Int. J. Syst. Bacteriol. 29:403–406
    [Google Scholar]
  5. Bøvre K. 1984; Neisseriaceae Prévot 1933, 119AL . 288–290 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Bøvre K. 1984; Genus II. Moraxella Lwoff 1939, 173 emend. Henriksen and Bøvre 1968, 391AL . 296–303 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Bøvre K., Henriksen S. D. 1967; A new Moraxella species, Moraxella osloensis, and a revised description of Moraxella nonliquefaciens. Int. J. Syst. Bacteriol. 17:127–135
    [Google Scholar]
  8. Bøvre K., Henriksen S. D. 1967; A revised description of Moraxella pofymorpha Flamm 1957, with a proposal of a new name, Moraxellaphenylpyrouvica, for this species. Int. J. Syst. Bacteriol. 17:343–360
    [Google Scholar]
  9. Brenner D. J. 1978; Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog. Clin. Pathol. 7:71–117
    [Google Scholar]
  10. Brenner D. J., McWhorter A. C., Knutson J. K. Leete, Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  11. Bryn K., Jantzen E., Bøvre K. 1977; Occurrence and patterns of waxes in Neisseriaceae. J. Gen. Microbiol. 102:33–43
    [Google Scholar]
  12. Catlin B. W. 1970; Transfer of the organism named Neisseria catarrhalis to Branhamella gen. nov. Int. J. Syst. Bacteriol. 20:155–159
    [Google Scholar]
  13. Catlin B. W. 1991; Branhamaceae fam. nov., a proposed family to accommodate the genera Branhamella and Moraxella. Int. J. Syst. Bacteriol. 41:320–323
    [Google Scholar]
  14. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  15. De Ley J. 1978 Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. 347–357 In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers 1Gibert-ClareyTours, France
    [Google Scholar]
  16. Descamps P., Véron M. 1981; Une méthode de choix des caractères d’identification basée sur le théorème de Bayes et la mesure de l’information. Ann. Microbiol. (Inst. Pasteur) 132B:157–170
    [Google Scholar]
  17. Dewhirst F. E., Paster B. J., Bright P. L. 1989; Chromobacterium, Eikenella, Kingella, Neisseria, Simonsieila, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: Transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend.). Int. J. Syst. Bacteriol. 39:258–266
    [Google Scholar]
  18. Dewhirst F. E., Paster B. J., La Fontaine S., Rood J. I. 1990; Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb, nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb, nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int. J. Syst. Bacterid. 40:426–433
    [Google Scholar]
  19. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  20. Hoke C., Vedros N. A. 1982; Taxonomy of the neisseriae: deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 32:57–66
    [Google Scholar]
  21. Jantzen E. 1984; Analysis of cellular components in bacterial classification and diagnosis. 257–302 In Odham G., Larsson L., Mårdh P.-A. (ed.) Gas chromatography, mass spectrometry: applications in microbiology Plenum Press; New York:
    [Google Scholar]
  22. Jantzen E., Bryn K., Bergan T., Bøvre K. 1974; Gas chromatography of bacterial whole cell methanolysates. V. Fatty acid composition of neisseriae and moraxellae. Acta Pathol. Microbiol. Scand. Sect. B 82:767–779
    [Google Scholar]
  23. Jantzen E., Bryn K., Bergan T., Bøvre K. 1975; Gas chromatography of bacterial whole cell methanolysates. VII. Fatty acid composition of Acinetobacter in relation to the taxonomy of Neisseriaceae. Acta Pathol. Microbiol. Scand. Sect. B 83:569–580
    [Google Scholar]
  24. Kates M. 1986; Techniques of lipidology. Isolation, analysis and identification of lipids, 2nd revised ed.. Elsevier; Amsterdam:
    [Google Scholar]
  25. Kingsbury D. T. 1967; Deoxyribonucleic acid homologies among species of the genus Neisseria. J. Bacteriol. 94:870–874
    [Google Scholar]
  26. Lenvoisé-Furet A. 1991; Identification des bactéries par Chromatographie en phase gazeuse de leurs acides gras membranaires. Application à l'étude taxonomique des Neisseria et des Pseudomonades. Diplôme EPHE (Ecole Pratique des Hautes Etudes) Sciences de la Vie et de la Terre; Paris:
    [Google Scholar]
  27. Miller L., Berger T. 1985; Bacteria identification by gas chromatography of whole-cell fatty acids. Hewlett-Packard application note 228–2411–8 Hewlett-Packard Co.; Palo Alto, Calif:
    [Google Scholar]
  28. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. J. Clin. Microbiol. 26:484–492
    [Google Scholar]
  29. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfeliow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215
    [Google Scholar]
  30. Pelczar M. J. 1953; Neisseria caviae nov. spec. J. Bacteriol. 65:744
    [Google Scholar]
  31. Riou J. Y., Bind J. L., Guibourdenche M., Bouvet P. 1982; Diagnostic bactériologique de Neisseria ovis. A propos d’une souche isolée de kératoconjonctivite de l’agneau. Pathol. Biol. 30:859–860
    [Google Scholar]
  32. Riou J. Y., Guibourdenche M. 1977; Diagnostic bactériologique des espèces des genres Neisseria et Branhamella. Ann. Biol. Clin. 35:73–87
    [Google Scholar]
  33. Riou J. Y., Guibourdenche M. 1987; Neisseiria polysaccharea sp. nov. Int. J. Syst. Bacteriol. 37:163–165
    [Google Scholar]
  34. Riou J. Y., Guibourdenche M., Popoff M. Y. 1983; A new taxon in the genus Neisseria. Ann. Microbiol. (Inst. Pasteur) 134B:257–267
    [Google Scholar]
  35. Romesburg H. C. 1984 Cluster analysis for researchers Lifetime Learning Publications; Belmont, Calif:
    [Google Scholar]
  36. Rossau R., Kersters K., Falsen E., Jantzen E., Segers P., Union A., Nehls L., De Ley J. 1987; Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198–210
    [Google Scholar]
  37. Rossau R., Vandenbussche G., Thielemans S., Segers P., Grosch H., Gōthe E., Mannheim W., De Ley J. 1989; Ribosomal ribonucleic acid cistron similarities and deoxyribonucleic acid homologies of Neisseria, Kingella, Eikenella, Simonsieila, Alysiella, and Centers for Disease Control groups EF-4 and M-5 in the emended family Neisseriaceae. Int. J. Syst. Bacteriol. 39:185–198
    [Google Scholar]
  38. Rossau R., Van Landschoot A., Gillis M., De Ley J. 1991; Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int. J. Syst. Bacteriol. 41:310–319
    [Google Scholar]
  39. Rossau R., Van Landschoot A., Mannheim W., De Ley J. 1986; Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323–332
    [Google Scholar]
  40. Russell N. J. 1974; The lipid composition of the psychrophilic bacterium Micrococcus cryophilus. J. Gen. Microbiol. 80:217–225
    [Google Scholar]
  41. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman; San Francisco:
    [Google Scholar]
  42. Snell J. J. S., Lapage S. P. 1976; Transfer of some saccharolytic Moraxella species to Kingella Henriksen and Bøvre 1976, with descriptions of Kingella indologenes sp. nov. and Kingella denitrificans sp. nov. Int. J. Syst. Bacteriol. 26:451–458
    [Google Scholar]
  43. Stackebrandt E., Murray R. G. E., Truper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  44. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42:281–295
    [Google Scholar]
  45. Thibault P., Piéchaud M., Véron M. 1963; Matériel et méthodes utilisés en bactériologie. 3–109 In Olivier H. R. (ed.) Traité de biologie appliquée 2 Maloine; Paris:
    [Google Scholar]
  46. Thibault P., Piéchaud M., Véron M. 1963; Bactéries aérobies. 111–221 In Olivier H. R. (ed.) Traité de biologie appliquée 2 Maloine; Paris:
    [Google Scholar]
  47. Vedros N. A. 1984; Genus I. Neisseria Trevisan 1885,105AL . 290–296 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  48. Vedros N. A., Hoke C., Chun P. 1983; Neisseria macacae sp. nov., a new Neisseria species isolated from the oropharynges of rhesus monkeys (Macaca mulatto). Int. J. Syst. Bacteriol. 33:515–520
    [Google Scholar]
  49. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  50. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-2-210
Loading
/content/journal/ijsem/10.1099/00207713-43-2-210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error