1887

Abstract

A numerical analysis based on phenotypic characteristics (89 enzymatic tests and 49 carbohydrate acidification tests), in which experimental strips from Biomerieux-API, La Balme les Grottes, France, were used, was performed to characterize 82 new isolates belonging or related to , and . A total of 72 strains were isolated from child or adult feces, and the other strains were obtained from human vaginas and bronchi. In this study we also included 38 type and reference strains that were representative of all speices of the genus and 6 strains belonging to the genus . DNA-DNA relationships between and were determined by using 19 strains related to these species, as determined by the numerical analysis. The degree of DNA binding was determined by the S1 nuclease method. The phenotypic study revealed that there were six main clusters, which were subdivided into nine subclusters. Subcluster Va contained the type strains of and . The DNA-DNA relatedness values of some of the new isolates were very similar to the DNA-DNA relatedness values of the type strain of . On the basis of these data, it was difficult to isolate strains and then to define as a single species separated from . Subclusters IVb to IVf comprised reference strains of . Cluster III and subcluster Ia were not identified.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-3-565
1993-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/3/ijs-43-3-565.html?itemId=/content/journal/ijsem/10.1099/00207713-43-3-565&mimeType=html&fmt=ahah

References

  1. Barsotti O., Morrier J. J., Freney J., Renaud F., Benay G., Decoret D., Dumont J. 1988; Achromopeptidase for rapid lysis of oral anaerobic Gram-positive rods. Oral Microbiol. Immunol 3:86–88
    [Google Scholar]
  2. Bezkorovainy A. 1989; Ecology of bifidobacteria. In Bezkorovainy A., Miller-Catchpole R. ed Biochemistry and physiology of bifidobacteria CRC Press; Boca Raton, Fla:
    [Google Scholar]
  3. Biavati B., Castagnoli P., Crociani F., Trovatelli L. D. 1984; Species of Bifidobacterium in the feces of infants. Micro-biologica (Bologna) 7:341–345
    [Google Scholar]
  4. Biavati B., Scardovi V., Moore W. E. C. 1982; Electrophoretic patterns of proteins in the genus Bifidobacterium and proposal of four new species. Int. J. Syst. Bacteriol 32:358–373
    [Google Scholar]
  5. Brenner D. J. 1978; Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog. Clin. Pathol 7:71–117
    [Google Scholar]
  6. Crosa J. M., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes.. J. Bacteriol 115:904–911
    [Google Scholar]
  7. Delabre M., Bianchi A., Veron M. 1973; Etude critique des methodes de taxonomie numerique. Application a une classification des bacteries aquicoles. Ann. Inst. Pasteur Microbiol 124A:489–506
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  9. Gavini F., Lefebvre B., Leclerc H. 1976; Positions tax-onomiques d’enterobacteries H2S- par rapport au genre Citrobacter.. Ann. Inst. Pasteur Microbiol 127A:275–295
    [Google Scholar]
  10. Gavini F., Pourcher A. M., Neut C., Monget D., Romond C., Oger C., Izard D. 1991; Phenotypic differentiation of bifidobacteria of human and animal origins. Int. J. Syst. Bacteriol 41:548–557
    [Google Scholar]
  11. Gavini F., Romond M. B., Beji A., Bernard C., Izard D. 1990; Genomic and phenotypic characterizations of Pseudomonas alcaligenes and Comamonas species with a special reference to C. testosteroni.. Curr. Microbiol 21:279–282
    [Google Scholar]
  12. Grimont P. A. D. 1988; Use of DNA reassociation in bacterial classification.. Can. J. Microbiol 34:541–546
    [Google Scholar]
  13. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproductibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  14. Lauer E., Kandler O. 1983; DNA-DNA homology, murein types, and enzyme patterns in the type strains of the genus Bifidobacterium.. Syst. Appl. Microbiol 4:42–64
    [Google Scholar]
  15. Mararar J. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  17. Mitsuoka T. 1969; Vergleichende Untersuchungen iiber die Bifidobakterien aus dem Verdauungstrakt von Menschen und Tieren. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 210:52–64
    [Google Scholar]
  18. Reuter G. 1963; Vergleichende Untersuchungen iiber die Bifi- dus-Flora im Sauglings- und Erwachsenenstuhl. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 191:486–507
    [Google Scholar]
  19. Roy D., Ward P., Toupin C. J., Chevalier P. 1991; Phenotypic characterization of Bifidobacterium spp. of human origin using rapid method. Microbiol. Aliments Nutr 9:133–138
    [Google Scholar]
  20. Scardovi V., Casalicchio F., Vincenzi N. 1979; Multiple electrophoretic forms of transaldolase and 6-phosphogluconic dehydrogenase and their relationships to the taxonomy and ecology of the bifidobacteria. Int. J. Syst. Bacteriol 29:312–327
    [Google Scholar]
  21. Scardovi V., Crociani F. 1974; Bifidobacterium catenula- tum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. Int. J. Syst. Bacteriol 24:6–20
    [Google Scholar]
  22. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. Int. J. Syst. Bacteriol 24:21–28
    [Google Scholar]
  23. Scardovi V., Trovatelli L. D., Biavati B., Zani G. 1979; Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium bourn, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homology relationships. Int. J. Syst. Bacteriol 29:291–311
    [Google Scholar]
  24. Scardovi V., Trovatelli L. D., Zani G., Crocciani F., Mateuzzi D. 1971; Deoxyribonucleic acid homology relationships among species of the genus Bifidobacterium.. Int. J. Syst. Bacteriol 21:276–294
    [Google Scholar]
  25. Scardovi V., Zani G., Trovatelli D. 1970; Deoxyribonucleic acid homology among the species of the genus Bifidobacterium isolated from animals. Arch. Microbiol 72:318–325
    [Google Scholar]
  26. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy. W. H. Freeman; San Francisco:
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  28. Yaeshima T., Fujisawa T., Mitsuoka T. 1991; Differential characteristics of Bifidobacterium longum and Bifidobacterium animalis.. Syst. Appl. Microbiol 14:169–172
    [Google Scholar]
  29. Yamazaki S., Machii K., Tsuyuki S., Momose H., Kawashima T., Ueda K. 1985; Immunological responses to monoas-sociated Bifidobacterium longum and their relation to prevention of bacterial invasion. Immunology 56:43–50
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-3-565
Loading
/content/journal/ijsem/10.1099/00207713-43-3-565
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error