1887

Abstract

Nine -like strains were isolated from human gingival crevices and characterized. These strains were gram-negative, straight rods that were motile by means of multiple unipolar flagella. They were asaccharolytic and preferred an anaerobic atmosphere rather than a microaerophilic atmosphere for growth, and their growth was stimulated by formate and fumarate. These strains were biochemically similar to and , but were clearly distinguishable from these organisms by the number of flagella (two to five flagella at one end of the cell), by being catalase positive, by their whole-cell protein profiles, by their Western blot (immunoblot) patterns, and on the basis of DNA-DNA homology data. They could also be differentiated from the other species of the genus The nine -like strains were compared with two strains (FDC 286 and VPI 10279) representing a previously described but unnamed sp. The nine isolates and strains FDC 286 and VPI 10279 were found to be members of a single species. The 16S rRNA sequences of two strains of the newly identified species were compared with the rRNA sequences of 21 reference , and species in order to generate a phylogenetic tree. We propose the name for the newly identified strains; strain SU A4 (= ATCC 51146) is the type strain of this new species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-631
1993-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-631.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-631&mimeType=html&fmt=ahah

References

  1. Badger S. J., Tanner A. C. R. 1981; Serological studies of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:446–451
    [Google Scholar]
  2. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52:461–466
    [Google Scholar]
  3. Dokland T., Olsen I., Farrants G., Johansen B. V. 1990; Three-dimensional structure of the surface layer of Wolinella recta. Oral Microbiol. Immunol. 5:162–165
    [Google Scholar]
  4. Etoh Y., Takahashi M., Yamamoto A. 1988; Wolinella curva subsp. intermedius subsp. nov.: isolated from human gingival crevice. J. Showa Univ. Dent. Soc. 8:349–354
    [Google Scholar]
  5. Hodge D. S., Borczyk A., Wat. L.-L. 1990; Evaluation of the indoxyl acetate hydrolysis test for the differentiation of campylobacters. J. Clin. Microbiol. 28:1482–1483
    [Google Scholar]
  6. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  7. Lai C.-H., Listgarten M. A., Tanner A. C. R., Socransky S. S. 1981; Ultrastructures of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corro-dens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:465–475
    [Google Scholar]
  8. Lane D. J. B., Pace G. J., Olsen D. A., Stahl M., Sogin L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  9. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19:1–67
    [Google Scholar]
  10. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138:267–284
    [Google Scholar]
  11. Pace B., Matthews K. D., Johnson C., Cantor R., Pace N. R. 1982; Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc. Natl. Acad. Sci. USA 79:36–40
    [Google Scholar]
  12. Paster B. J., Dewhirst F. E. 1988; Phylogeny of campylobacters, wolinellas, Bacteroides gracilis, and Bacteroides ure-olyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38:56–62
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  14. Smibert R. M., Holdeman L. V. 1976; Clinical isolates of anaerobic gram-negative rods with a formate-fumarate energy metabolism: Bacteroides corrodens, Vibrio succinogenes, and unidentified strains. J. Clin. Microbiol. 3:432–437
    [Google Scholar]
  15. Studier J., Keppler K. 1988; A note on the neighbor-joining algorithm of Saitou and Nei. Mol. Biol. Evol. 5:729–731
    [Google Scholar]
  16. Takamori K., Etoh Y., Yamamoto A., Takahashi M., Mizuno F., Sasaki T., Higashi S. 1982; Strict anaerobic organisms resembling Wolinella isolated from human gingival crevice. Jpn. J. Oral Biol. 24:541–544
    [Google Scholar]
  17. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  18. Tanner A. C. R. 1986; Characterization of Wolinella spp., Campylobacter concisus, Bacteroides gracilis, and Eikenella corrodens by polyacrylamide gel electrophoresis. J. Clin. Microbiol. 24:562–565
    [Google Scholar]
  19. Tanner A. C. R., S. J. Badger C.-H., Lai M. A., Listgarten R., Visconti A., Socransky S. S. 1981; Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb, nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31:432–445
    [Google Scholar]
  20. Tanner A. C. R., Listgarten M. A., Ebersole J. L. 1984; Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34:275–282
    [Google Scholar]
  21. Tanner A. C. R., Listgarten M. A., Ebersole J. L., Strzempko M. N. 1986; Bacteroides forsythus sp. nov., a slow-growing, fusiform Bacteroides sp. from the human oral cavity. Int. J. Syst. Bacteriol. 36:213–221
    [Google Scholar]
  22. Tanner A. C. R., Visconti R. A., Holdeman L. V., Sundqvist G., Socransky S. S. 1982; Similarity of Wolinella recta strains isolated from periodontal pockets and root canals. J. Endod. 8:294–300
    [Google Scholar]
  23. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol. 19:333–355
    [Google Scholar]
  24. Vandamme P., De Ley J. 1991; Proposal for a new family, Campylobacteraceae. Int. J. Syst. Bacteriol. 41:451–455
    [Google Scholar]
  25. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. 1991; Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41:88–103
    [Google Scholar]
  26. van Palenstein Helderman W. H., Winkler K. C. 1975; Elective medium for the direct count of vibrio (campylobacter) fusobacteria, bacteroides, selenomonas and veillonella in the gingival crevice flora. J. Periodontal Res. 10:230–241
    [Google Scholar]
  27. Wyss C. 1989; Campylobacter-Wolinella group organisms are the only oral bacteria that form arylsulfatase-active colonies on a synthetic indicator medium. Infect. Immun. 57:1380–1383
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-631
Loading
/content/journal/ijsem/10.1099/00207713-43-4-631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error