1887

Abstract

A thermoacidophilic, obligately chemolithoautotrophic, aerobic, hydrogen-oxidizing bacterium, strain 3H-1(T = type strain), was isolated from a solfataric field in Tsumagoi, Japan. This strain is a gram-negative, motile, non-spore-forming rod-shaped organism that requires elemental sulfur for growth by hydrogen oxidation. Type , and cytochromes are present. Carbon dioxide may be fixed via the reductive tricarboxylic acid cycle. The optimum temperature for growth is 65°C. The optimum pH for growth is 3.0 to 4.0. The guanine-plus-cytosine content of DNA is 35.0 mol%. A straight-chain saturated Cacid and straight-chain unsaturated Cand Cacids are the major components of the cellular fatty acids. 2-Methylthio-3-VI, VII-tetrahydromultiprenyl-1,4-naphthoquinone (methionaquinone) is the major isoprenoid quinone. This strain is considered a member of a new species of the genus , a genus of obligately chemolithoautotrophic, aerobic, hydrogen-oxidizing bacteria. The name sp. nov. is proposed for the organism. The type strain of this species is strain 3H-1 (= JCM 8795).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-703
1993-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-703.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-703&mimeType=html&fmt=ahah

References

  1. Aragno M. 1992; Aerobic, chemolithoautotrophic, thermophilic bacteria. p. 77–103 In Kristjansson J. K. (ed.) Thermophilic bacteria CRC Press, Inc.; Boca Raton, Fla.:
    [Google Scholar]
  2. Beatrice M. C., Chappell J. B. 1979; The respiratory chain of Hydrogenomonas H-16. Biochem. J. 178:15–22
    [Google Scholar]
  3. Bonjour F., Aragno M. 1984; Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch. Microbiol. 139:397–401
    [Google Scholar]
  4. Bonjour F., Aragno M. 1986; Growth of thermophilic, obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol. Lett. 35:11–15
    [Google Scholar]
  5. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R. 1992; A phylogenetic analysis of Aquifex pyrophilus. Syst. Appl. Microbiol. 15:352–356
    [Google Scholar]
  6. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., Konig H., Rachel R., Rockinger I., Fricke H., Stetter K. O. 1992; Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15:340–351
    [Google Scholar]
  7. Ishii M., Igarashi Y., Kodama T. 1989; Purification and characterization of ATP:citrate lyase from Hydrogenobacter thermophilus TK-6. J. Bacteriol. 171:1788–1792
    [Google Scholar]
  8. Ishii M., Itoh S., Kawasaki H., Igarashi Y., Kodama T. 1987; The membrane-bound hydrogenase reduces cytochrome c«o in Hydrogenobacter thermophilus strain TK-6. Agric. Biol. Chem. 51:1825–1831
    [Google Scholar]
  9. Ishii M., Kawasumi T., Igarashi Y., Kodama T. 1987; 2-Methylthio-l,4-naphthoquinone, a unique sulfur-containing quinone from a thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. J. Bacteriol. 169:2380–2384
    [Google Scholar]
  10. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1980; Isolation of strictly thermophilic and obligately autotrophic hydrogen bacteria. Agric. Biol. Chem. 44:1985–1986
    [Google Scholar]
  11. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 34:5–10
    [Google Scholar]
  12. Kitto G. B. 1969; Intra-and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol. 13:106–116
    [Google Scholar]
  13. Kniittel K„, Schneider K., Schlegel H. G., Muller A. 1989; The membrane-bound hydrogenase from Paracoccus denitrifi-cans. Purification and molecular characterization. J. Biochem. 179:101–108
    [Google Scholar]
  14. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19:161–207
    [Google Scholar]
  15. Kristjansson J. K. 1992; Ecology of thermophilic eubacteria, p. 48. Program Abstr. Int. Conf. Thermophiles: Sci. Technol.
    [Google Scholar]
  16. Kristjansson J. K., Ingason A., Alfredsson G. A. 1985; Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs. Arch. Microbiol. 140:321–325
    [Google Scholar]
  17. Kryukov V. R., Savelyeva N. D., Pusheva M. A. 1983; Calderobacterium hydrogenophilum nov. gen., nov. sp., an extreme thermophilic hydrogen bacterium, and its hydrogenase activity. Mikrobiologiya 52:781–788
    [Google Scholar]
  18. Kurtenacker A. 1938; Analytische Chemie der Sauerstoffsauren des Schwefels. Die chemische Analyse 38 Ferdinand Enke Verlag; Stuttgart, Germany:
    [Google Scholar]
  19. Nishihara H., Igarashi Y., Kodama T. 1989; Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch. Microbiol. 152:39–43
    [Google Scholar]
  20. Nishihara H., Igarashi Y., Kodama T. 1990; A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring. Arch. Microbiol. 153:294–298
    [Google Scholar]
  21. Nishihara H., Igarashi Y., Kodama T. 1991; Hydrogen-ovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 41:130–133
    [Google Scholar]
  22. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  23. Schlegel H. G. 1989; Aerobic hydrogen-oxidizing (knallgas) bacteria. p. 305–329 In Schlegel H. G., Bowien B. (ed.) Autotrophic bacteria Science Tech Publishers; Madison, Wis.:
    [Google Scholar]
  24. Shiba H., Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1985; The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen- oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol. 141:198–203
    [Google Scholar]
  25. Stetter K. O. 1989; Extremely thermophilic chemolithoau- totrophic archaebacteria. p. 167–176 In Schlegel H. G., Bowien B. (ed.) Autotrophic bacteria Science Tech Publishers; Madison, Wis.:
    [Google Scholar]
  26. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117–124
    [Google Scholar]
  27. Storrie B., Madden E. A. 1990; Isolation of subcellular organelles. Methods Enzymol. 182:203–225
    [Google Scholar]
  28. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31:131–138
    [Google Scholar]
  29. Takeda Y., Suzuki F., Inoue H. 1969; ATP citrate lyase (citrate-cleavage enzyme). Methods Enzymol. 13:153–160
    [Google Scholar]
  30. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-703
Loading
/content/journal/ijsem/10.1099/00207713-43-4-703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error