1887

Abstract

Numerical taxonomic, DNA-DNA hybridization, and phospholipid fatty acid composition analyses were performed on an extensive range of methanotrophic strains, including reference strains and environmental isolates obtained from sites throughout eastern Australia. When the results of these studies were related to the results of a study based on genomic physicochemical properties, they clarified group I and II methanotroph genus and species interrelationships. The group I methanotrophs were found to be made up of three broadly phenotypically and genotypically homologous clusters of species. The first group I methanotroph cluster included the carotenoid-containing species , and These species represent the true members of the genus The second group I methanotroph cluster was made up of two subclusters of strains. One subcluster included species not capable of producing resting cells and consisted of the species “,” and The other subcluster included species capable of forming desiccation-resistant cysts and included , marine -like strains, and Strains designated “” and were found to be synonyms of , while was a synonym of It is proposed that these subclusters represent a new genus, gen. nov. The species in the new genus are type species comb. nov., sp. nov., sp. nov., nom. rev., sp. nov., comb. nov., and comb. nov. The remaining group I methanotrophs included the moderately thermophilic species and and a group of unnamed strains closely related to It is proposed that these species represent the true members of the genus The group II methanotrophs consisted of two closely related groups. The first group included budding, exospore-producing strains, while the second group included nonmotile, cyst-forming strains. These groups represent the genera and , which are revived here. The genus gen. nov., nom. rev. includes the species sp. nov., nom. rev. and sp. nov., nom. rev., while the genus gen. nov., nom. rev. includes the species sp. nov., nom. rev. and sp. nov., nom. rev.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-43-4-735
1993-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/43/4/ijs-43-4-735.html?itemId=/content/journal/ijsem/10.1099/00207713-43-4-735&mimeType=html&fmt=ahah

References

  1. Anderson L. E., Fuller R. C. 1969; Photosynthesis in Rhodospirillum rubrum. IV. Isolation and characterization of ribulose-1,5-diphosphate carboxylase. J. Biol. Chem. 244:3105–3109
    [Google Scholar]
  2. Andreev L. V., Gal’chenko V. F. 1978; Fatty acid composition and identification of methanotrophic bacteria. Dokl. Akad. Nauk SSSR 269:1461–1468
    [Google Scholar]
  3. Bezrukova L. V., Nikolenko Y. I., Nesterov A. I., Gal’chenko V. F., Ivanov M. V. 1983; Comparative serological analysis of methanotrophic bacteria. Mikrobiologiya 52:800–805
    [Google Scholar]
  4. Bowman J. P., Jimenez L., Rosario I., Hazen T. C., Sayler G. S. 1993; Characterization of the methanotrophic bacterial communities present in a trichloroethylene-contaminated subsurface groundwater site. Appl. Environ. Microbiol. 59:2380–2387
    [Google Scholar]
  5. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I. 1991; Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilising bacteria. FEMS Microbiol. Ecol. 85:15–22
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Cox J. M., Hayward A. C. 1990; Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: two closely related type I obligate methanotrophs. Syst. Appl. Microbiol. 13:279–287
    [Google Scholar]
  7. Bowman J. P., Sly L. I., Hayward A. C. 1991; Contribution of genome characteristics to the assessment of taxonomy of obligate methanotrophs. Int. J. Syst. Bacteriol. 41:301–305
    [Google Scholar]
  8. Bowman J. P., Sly L. I., Stackebrandt E. 1992; The phylogeny of methanotrophic bacteria based on 16S rDNA sequences, abstr. no. C-97. 7th Int. Symp. Microbial Growth Q Compounds, Warwick, United Kingdom
    [Google Scholar]
  9. Bratina B. J., Brasseau G. A., Hanson R. S. 1992; Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int. J. Syst. Bacteriol. 42:645–648
    [Google Scholar]
  10. Bulygina E. S., Chumakov K., Netrusov A. 1992; Systematics of gram negative methylotrophic bacteria based on 5S rRNA sequences, abstr. no. L22. 7th Int. Symp. Microbial Growth Cx Compounds, Warwick, United Kingdom
    [Google Scholar]
  11. Bulygina E. S., Gal’chenko V. F., Govorukhina N. I., Netrusov A. I., Nikitin D. I., Trotsenko Y. A., Chumakov K. M. 1990; Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. J. Gen. Microbiol. 136:441–446
    [Google Scholar]
  12. Collins M. D., Green P. N. 1985; Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Biochem. Biophys. Res. Commun. 133:1125–1131
    [Google Scholar]
  13. Cox J. M., MacRae I. C. 1989; A numerical taxonomy study of proteolytic and lipolytic psychotrophs isolated from caprine milk. J. Appl. Bacteriol. 66:137–152
    [Google Scholar]
  14. Dahl J. S., Mehta K., Hoare D. S. 1971; New obligate methylotrophs. J. Bacteriol. 109:916–921
    [Google Scholar]
  15. Doetsch R. N. 1981; Determinative methods of light microscopy. p. 21–33 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington D.C.:
    [Google Scholar]
  16. Duguid J., Marmion B., Swain R. 1975; Staining of diphtheria bacillus and volutin-containing organisms, p. 41. In Cruikshank R., Duguid J., Marmion B., Swain R. (ed.) Medical microbiology, 12th ed. Churchill-Livingstone; Edinburgh:
    [Google Scholar]
  17. Dunkleblum E., Tan S. H., Silk R. J. 1985; Double-bond location in monounsaturated fatty acids by dimethyl disulphide derivitization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J. Chem. Ecol. 11:265–277
    [Google Scholar]
  18. Easterbrook K. W. 1989; Spinate bacteria. p. 1991–1993 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1: The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Fassel T. A., Schaller M. J., Lidstrom M. E., Remsen C. C. 1990; Effect of fixation-resin combinations and ruthenium red on elucidating outer envelope structure and surface morphology of two methanotrophic bacteria. J. Electron Microsc. Tech. 14:52–62
    [Google Scholar]
  20. Foster J. W., Davis R. H. 1966; A methane-dependent coccus, with notes on classification of obligate, methane-utilizing bacteria. J. Bacteriol. 91:1924–1931
    [Google Scholar]
  21. Gal’chenko V. F., Nesterov A. I. 1981; Numerical analysis of protein electrophoretograms of obligate methanotrophic bacteria. Mikrobiologiya 50:725–730
    [Google Scholar]
  22. Gal’chenko V. F., Shishkina V. N., Suzina N. E., Trotsenko Y. A. 1977; Isolation and properties of new strains of obligate methanotrophs. Mikrobiologiya 46:723–728
    [Google Scholar]
  23. Green P. N. 1992; Taxonomy of methylotrophic bacteria. p. 23–84 In Murrell J. C., Dalton H. (ed.) Methane and methanol utilizers Plenum Press; New York:
    [Google Scholar]
  24. Guckert J. B., Ringleberg D. B., White D. C., Hanson R. S., Bratina B. J. 1991; Membrane fatty acids as phenotypic markers for the polyphasic approach to taxonomy of methylotrophs within the Proteobacteria. J. Gen. Microbiol. 137:2631–2641
    [Google Scholar]
  25. Hanson R. S., Phillips J. A. 1981; Chemical composition p. 328—364. In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  26. Hanson R. S., Wattenberg E. V. 1991; Ecology of methylotrophic bacteria. p. 325–348 In Goldberg I., Rokem J. S. (ed.) Biology of methylotrophs Butterworth-Heinemann; London:
    [Google Scholar]
  27. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  28. Jenkins O., Jones D. 1987; Taxonomic studies on some Gram-negative methylotrophic bacteria. J. Gen. Microbiol. 133:453–473
    [Google Scholar]
  29. Lanyi B. 1987; Identification methods for important bacteria. Methods Microbiol. 19:105–160
    [Google Scholar]
  30. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (ed.) 1975 International code of nomenclature of bacteria. 1976 Revision American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  31. Large P. J., Quayle J. R. 1963; Microbial growth on Cx compounds. V. Enzyme activities in extracts of Pseudomonas AMI. Biochem. J. 87:386–395
    [Google Scholar]
  32. Liang J., Chen Z. 1983; A new genus of bacteria: Echino-sporobacterium album. Microbiol. Sinica 23:193–196
    [Google Scholar]
  33. Lidstrom M. E. 1988; Isolation and characterization of marine methanotrophs. Antonie van Leeuwenhoek 54:189–199
    [Google Scholar]
  34. Lysenko A. M., Gal’chenko V. F., Chernykh N. A. 1988; Taxonomic study of obligate methanotrophic bacteria using the DNA-DNA hybridization technique. Mikrobiologiya 57:653–658
    [Google Scholar]
  35. Malashenko Y. R., Romanovskaya V. A., Bogachenko V. N., Shved A. D. 1975; Thermophilic and thermotolerant methane-assimilating bacteria. Mikrobiologiya 44:855–862
    [Google Scholar]
  36. Meyer J., Haubold R., Heyer J., Bockel W. 1986; Contribution to the taxonomy of methanotrophic bacteria: correlation between membrane type and GC-value. Z. Allg. Mikrobiol. 26:155–160
    [Google Scholar]
  37. Moore W. E. C., Moore L. V. H. 1990; Index of the bacterial and yeast nomenclatural changes published in the International Journal of Systematic Bacteriology since the 1980 Approved Lists of Bacterial Names (1 January 1980 to 1 January 1989). American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  38. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethydisulphide adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  39. Nichols P. D., Smith G. A., Antworth C. P., Hanson R. S., White D. C. 1985; Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane- oxidizing bacteria. FEMS Microbiol. Ecol. 32:327–335
    [Google Scholar]
  40. Pierson B. K., Giovannoni S. J., Castenholtz R. U. 1984; Physiological ecology of a gliding bacterium containing bacterio-chlorophyll a. Appl. Environ. Microbiol. 47:576–584
    [Google Scholar]
  41. Rogosa M., Krichevsky M. I., Colwell R. R. 1986 Coding microbiological data for computers Springer-Verlag; New York:
    [Google Scholar]
  42. Romanovskaya V. A. 1984; Methylovarius gen. nov., a new genus. Mikrobiologiya 53:640–646
    [Google Scholar]
  43. Romanovskaya V. A., Malashenko Y. R., Bogachenko Y. N. 1978; Corrected diagnoses of the genera and species of methane-utilizing bacteria. Mikrobiologiya 47:96–103
    [Google Scholar]
  44. Romanovskaya V. A., Malashenko Y. R., Grishchenko N. I. 1981; Diagnosis of methane-oxidizing bacteria by numerical methods based on cell fatty acid composition. Mikrobiologiya 49:762–764
    [Google Scholar]
  45. Sieburth J. M., Johnson P. W., Eberhardt M. A., Sieracki M. E., Lidstrom M. E., Laux D. 1987; The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr. Microbiol. 14:285–293
    [Google Scholar]
  46. Sly L. I. 1982; The use of disposable gas generating kits for the growth of hydrogen-oxidizing bacteria and the determination of hydrogen autotrophy. J. Microbiol. Methods 3:7–14
    [Google Scholar]
  47. Smibert R. M., Krieg N. R. 1981; Gene ral characterization. p. 409–443 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  48. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman & Co.; San Francisco:
    [Google Scholar]
  49. Sokolov I. G., Romanovskaya V. A., Shkurko Y. B., Malashenko Y. R. 1980; Comparative characterization of the enzyme systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH. Mikrobiologiya 49:142–148
    [Google Scholar]
  50. Staley J. T. 1968; Prosthecomicrobium and Anacalomicrobium: new freshwater prosthecate bacteria. J. Bacteriol. 95:1921–1942
    [Google Scholar]
  51. Takeda K. 1988; Characteristics of a nitrogen-fixing methan-otroph, Methylocystis T-l. Antonie van Leeuwenhoek 54:521–534
    [Google Scholar]
  52. Tsqji K., Tsien H. C., Hanson R. S., dePalma S. R., Scholtz R., LaRoche S. 1990; 16S ribosomal RNA sequence analysis for determination of phylogenetic relationships among methy-lotrophs. J. Gen. Microbiol. 136:1–10
    [Google Scholar]
  53. Vela G. R., Wyss O. 1964; Improved stain for the visualization of Azotobacter encystment. J. Bacteriol. 87:476–477
    [Google Scholar]
  54. White D. C., Bobbie R. J., Herron J. S., King J. D., Morrison S. J. 1979; Biochemical measurements of microbial biomass and activity from environmental samples. p. 69–81 In Costerton J. W., Colwell R. R. (ed.) Native aquatic bacteria: enumeration, activity and ecology Publication ASTM STP695 American Society for Testing and Materials; Philadelphia:
    [Google Scholar]
  55. Whittenbury R., Davies S. L., Davey J. F. 1970; Exospores and cysts formed by methane-utilizing bacteria. J. Gen. Microbiol. 61:219–226
    [Google Scholar]
  56. Whittenbury R., Krieg N. R. 1984; Family IV Methylo-coccaceae. p. 256–261 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  57. Whittenbuiy R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205–218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-43-4-735
Loading
/content/journal/ijsem/10.1099/00207713-43-4-735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error