1887

Abstract

Two genetically diverse groups of strains were identified among cultures of pv. vesicatoria isolated from plants with bacterial spot of pepper and tomato. Group A strains do not pit pectate gels or hydrolyze starch, whereas group B strains are strongly positive for these reactions. Group A strains cause a hypersensitive reaction in plants of tomato breeding line Hawaii 7998, but group B strains do not. Other differences between the two groups of strains were discovered in tests for utilization of carbon compounds, serology, fatty acid profiles, silver-stained protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, and DNA restriction enzyme digestion profiles. The levels of DNA homology between strains belonging to the same group were more than 74%, but the levels of DNA homology between strains belonging to different groups were less than 46%. The two groups of strains have different genetic backgrounds, but cause essentially the same disease of tomato and pepper.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-1-47
1994-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/1/ijs-44-1-47.html?itemId=/content/journal/ijsem/10.1099/00207713-44-1-47&mimeType=html&fmt=ahah

References

  1. Alvarez A. M., Benedict A. A., Mizumoto C. Y. 1985; Identification of xanthomonads and grouping of strains of Xanthomonas campestris pv. campestris with monoclonal antibodies. Phytopathology 75 722 728
    [Google Scholar]
  2. Bouzar H. Unpublished data
  3. Burkholder W. H., Li C. C. 1941; Variations in Phytomonas vesicatoria. Phytopathology 31 753 755
    [Google Scholar]
  4. Canteros B., Minsavage G., Bonas U., Pring D., Stall R. 1991; A gene from Xanthomonas campestris pv. vesicatoria that determines avirulence in tomato is related to avrBs3. Mol. Plant Microbe Interact. 4 628 632
    [Google Scholar]
  5. Canteros B. I. 1990 Diversity of plasmids and plasmid-encoded phenotypic traits in Xanthomonas campestris pv. vesicatoria Ph.D. dissertation. University of Florida; Gainesville:
    [Google Scholar]
  6. Cox R. S., Conover R. A., Sowell G. 1956; Symptomology of bacterial spot of pepper and tomato in southern Florida. Phytopathology 46 582 584
    [Google Scholar]
  7. Cuppels D., Kelman A. 1974; Evaluation of selective media for isolation of soft-rot bacteria from soil and plant tissue. Phytopathology 64 468 475
    [Google Scholar]
  8. Doidge E. M. 1921; A tomato canker. Ann. Appl. Biol. 7 407 429
    [Google Scholar]
  9. Dye D. W., Bradbury J. F., Goto M., Hayward A. C., Lelliott R. A., Schroth M. N. 1980; International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59 153 168
    [Google Scholar]
  10. Egel D. S., Graham J. H., Stall R. E. 1991; Genomic relatedness of Xanthomonas campestris strains causing disease on citrus. Appl. Environ. Microbiol. 57 2724 2730
    [Google Scholar]
  11. Felsenstein J. 1991 PHYLIP, phylogeny inference package, ver. 3.4 Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  12. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155 279 284
    [Google Scholar]
  13. Gardner M. W., Kendrick J. B. 1921; Bacterial spot of tomato. J. Agric. Res. 21 123 156
    [Google Scholar]
  14. Gardner M. W., Kendrick J. B. 1923; Bacterial spot of tomato and pepper. Phytopathology 13 307 315
    [Google Scholar]
  15. Gitaitis R. D., Sasser M. J., Beaver R. W., McInes I. B., Stall R. E. 1987; Pectolytic xanthomonads in mixed infections with Pseudomonas syringae pv. syringae, P. syringae pv. tomato, and Xanthomonas campestris pv. vesicatoria in tomato and pepper transplants. Phytopathology 77 611 615
    [Google Scholar]
  16. Hildebrand D. C. 1971; Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61 1430 1436
    [Google Scholar]
  17. Jackman P. J. H. 1985; Bacterial taxonomy based on electrophoretic whole-cell patterns. 115 129 Goodfellow M., Minnikin D. E. Chemical methods in bacterial systematics Academic Press; London:
    [Google Scholar]
  18. Jones J. B. 1991; Bacterial spot. 27 Jones J. B., Jones J. P., Stall R. E., Zitter T. A. Compendium of tomato diseases APS Press, St. Paul; Minn:
    [Google Scholar]
  19. Jones J. B., Bouzar H. Unpublished data
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227 680 685
    [Google Scholar]
  21. Leyns D., De Cleene M., Swings J., De Ley J. 1984; The host range of the genus Xanthomonas. Bot. Rev. 50 308 356
    [Google Scholar]
  22. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16 584 586
    [Google Scholar]
  23. Minsavage G. V., Dahlbeck D., Whalen M. C., Kearney B., Bonas U., Staskawicz B. J., Stall R. E. 1990; Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria -pepper interactions. Mol. Plant Microbe Interact. 3 41 53
    [Google Scholar]
  24. Roy M. A. 1988; Use of fatty acids for the identification of phytopathogenic bacteria. Plant Dis. 72 460
    [Google Scholar]
  25. Sasser M. J. 1990; Identification of bacteria through fatty acid analysis. 199 204 Klement Z., Rudolph K., Sands D. Methods in phytobacteriology Akademiai Kiado; Budapest:
    [Google Scholar]
  26. Schaad N. W. 1976; Immunological comparison and characterization of ribosomes of Xanthomonas vesicatoria. Phytopathology 66 770 776
    [Google Scholar]
  27. Vauterin L., Swings J., Kersters K. 1991; Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. J. Gen. Microbiol. 137 1677 1687
    [Google Scholar]
  28. Vauterin L., Swings J., Kersters K., Gillis M., Mew T. W., Schroth M. N., Palleroni N. J., Hildebrand D. C., Stead D. E., Civerolo E. L., Hayward A. C., Maraite H., Stall R. E., Vidaver A. K., Bradbury J. F. 1990; Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Bacteriol. 40 312 316
    [Google Scholar]
  29. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. 1991; Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int. J. Syst. Bacteriol. 41 535 542
    [Google Scholar]
  30. Voller A., Bartlett A., Bidwell D. E., Clark M. F., Adams A. N. 1976; The detection of viruses by enzyme-linked immunosorbent assay (ELISA). J. Gen. Virol. 33 165 167
    [Google Scholar]
  31. Wang J.-F., Jones J. B., Scott J. W., Stall R. E. 1990; A new race of the tomato group of strains of Xanthomonas campestris pv. vesicatoria. Phytopathology 80 1070
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37 463 464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-1-47
Loading
/content/journal/ijsem/10.1099/00207713-44-1-47
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error