1887

Abstract

A high degree of genetic diversity among 29 strains of from the rumen was revealed by comparing restriction fragment length polymorphisms in 16S rRNA genes, sodium dodecyl sulfate-polyacrylamide gel profiles of total-cell proteins, and G+C contents of chromosomal DNAs. In order to obtain information on phylogenetic relationships, the sequences of a 389-bp region of the 16S rRNA gene, including variable regions 4 and 5, were compared for 10 strains. These 10 strains formed a single group when their sequences were compared with 16S ribosomal DNA sequences from other species, including spp. from the human colon. On the other hand, the great genetic distances between many strains, including subsp. B4 and GA33 and 23 (T = type strain), support the hypothesis that these organisms should be reclassified into new species. We identified signature oligonucleotides based on 16S ribosomal DNA sequences that distinguished strains related to strains 23, B4, GA33, and M384, as well as an oligonucleotide that specifically recognized all but one of the and strains tested. On the basis of the priming activities of these signature oligonucleotides in PCR reactions and on other criteria, we concluded that 12 of the original 29 strains were related to strain 23, 4 were related to strain B4, and 4 were related to strain GA33. While there are clear grounds for subdividing the species on the basis of genotypic differences, it is appropriate to delay formal reclassification until further work on the phenotypic differentiation of the new groups is completed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-2-246
1994-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/2/ijs-44-2-246.html?itemId=/content/journal/ijsem/10.1099/00207713-44-2-246&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current protocols in molecular biology 1 John Wiley and Sons; New York:
    [Google Scholar]
  2. Avgustin G., Flint H. J., Whitehead T. R. 1992; Distribution of xylanase genes and enzymes among strains of Prevotella (Bacteroides) ruminicola from the rumen. FEMS Microbiol. Lett. 99137–144
    [Google Scholar]
  3. Avgustin G. et al. Unpublished data
  4. Brosius J., Dull T. J., Sleeter D., Noller H. F. 1981; Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148107–127
    [Google Scholar]
  5. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 251324–1328
    [Google Scholar]
  6. Bryant M. P., Small N., Bouma C., Chu H. 1958; Bacteroides ruminicola n. sp. and Succinimonas amylolytica, the new genus and species. J. Bacteriol. 7615–23
    [Google Scholar]
  7. Cotta M. A. 1988; Amylolytic activity of selected species of ruminai bacteria. Appl. Environ. Microbiol. 54772–776
    [Google Scholar]
  8. Dehority B. A. 1966; Characterization of several bovine rumen bacteria isolated with a xylan medium. J. Bacteriol. 911724–1729
    [Google Scholar]
  9. Dehority B. A. 1969; Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99189–196
    [Google Scholar]
  10. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1326–13
    [Google Scholar]
  11. Feinberg A. P., Vogelstein B. 1984; Addendum. Anal. Biochem. 137266–267
    [Google Scholar]
  12. Flint H. J., McPherson C. A., Avgustin G., Stewart C. S. 1990; Use of a cellulase-encoding gene probe to reveal restriction fragment length polymorphisms among ruminai strains of Bacteroides succinogenes. Curr. Microbiol. 2063–67
    [Google Scholar]
  13. Flint H. J., Stewart C. S. 1987; Antibiotic resistance patterns and plasmids of ruminai strains of Bacteroides ruminicola and Bacteroides multiacidus. Appl. Microbiol. Biotechnol. 26450–455
    [Google Scholar]
  14. Flint H. J., Thomson A. M., Bisset J. 1988; Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl. Environ. Microbiol. 54555–560
    [Google Scholar]
  15. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the “Flavobacterium-Bacteroides” phylum: basis for taxonomic restructuring. Syst. Appl. Microbiol. 15513–521
    [Google Scholar]
  16. Hedges S. B. 1992; The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol. Biol. Evol. 9366–369
    [Google Scholar]
  17. Higgins D. G., Fuchs R., Bleasby A. 1992; CLUSTAL V: a new multiple sequence alignment program. CABIOS 8189–191
    [Google Scholar]
  18. Hobson P. N. 1969; Rumen bacteria. Methods Microbiol. 3B133–149
    [Google Scholar]
  19. Holdeman L. V., Good I. J., Moore W. E. C. 1976; Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31359–375
    [Google Scholar]
  20. Holdeman L. V., Kelly R. W., Moore W. E. C. 1984; Bacteroides,. 604–631 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 Williams and Wilkins; Baltimore:
    [Google Scholar]
  21. Hungate R. E. 1966 The rumen and its microbes Academic Press, Inc.; New York:
    [Google Scholar]
  22. Kimura M. 1983 The neutral theory of molecular evolution Cambridge University Press; Cambridge:
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227680–685
    [Google Scholar]
  24. Mannarelli B. M. Personal communication
    [Google Scholar]
  25. Mannarelli B. M., Ericsson L. D., Lee D., Stack R. J. 1991; Taxonomic relationships among strains of the anaerobic bacterium Bacteroides ruminicola determined by DNA and extracellular polysaccharide analysis. Appl. Environ. Microbiol. 572975–2980
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5109–118
    [Google Scholar]
  27. Marshall C. R. 1992; Substitution bias, weighted parsimony and amniotic phylogeny as inferred from 18S rRNA sequences. Mol. Biol. Evol. 9370–373
    [Google Scholar]
  28. McKain N., Wallace R. J., Watt N. D. 1992; Selective isolation of bacteria with dipeptidyl amino peptidase type I activity from the sheep rumen. FEMS Microbiol. Lett. 95169–174
    [Google Scholar]
  29. Messing J. 1983; New M13 vectors for cloning. Methods Enzymol. 10120–78
    [Google Scholar]
  30. Osborne J. M., Dehority B. A. 1989; Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of rumen bacteria. Appl. Environ. Microbiol. 552247–2250
    [Google Scholar]
  31. Reddy C. A., Bryant M. P. 1977; Deoxyribonucleic acid base composition of certain species of the genes Bacteroides. Can. J. Microbiol. 231252–1256
    [Google Scholar]
  32. Robinson I. M., Allison M. J., Bucklin J. A. 1981; Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41950–955
    [Google Scholar]
  33. Robinson I. M., Whipp S. C., Bucklin A. J., Allison M. J. 1984; Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl. Environ. Microbiol. 48964–969
    [Google Scholar]
  34. Russell J. M. 1985; Fermentation of cellodextrins by cellulolytic and non-cellulolytic rumen bacteria. Appl. Environ. Microbiol. 49572–576
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4406–425
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd ed.. Cold Spring Harbor Laboratory Press, Cold Spring Harbor; N.Y.:
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 745463–5467
    [Google Scholar]
  38. Shah H. N., Collins M. D. 1983; Genus Bacteroides: a chemotaxonomical perspective. J. Appl. Bacteriol. 55403–416
    [Google Scholar]
  39. Shah H. N., Collins M. D. 1990; Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 40205–208
    [Google Scholar]
  40. Shah H. N., Williams R. A. D., Bowden G. H., Hardie J. M. 1976; Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J. Appl. Bacteriol. 41473–492
    [Google Scholar]
  41. Shoemaker N. B., Wang G.-R., Salyers A. A. 1992; Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl. Environ. Microbiol. 581313–1320
    [Google Scholar]
  42. Smith C. J., Callihan D. R. 1992; Analysis of rRNA restriction fragment length polymorphisms from Bacteroides spp. and Bacteroides fragilis isolates associated with diarrhea in humans and animals. J. Clin. Microbiol. 30806–812
    [Google Scholar]
  43. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. 1988; Use of phylogenetically based hybridization probes for studies of ruminant microbial ecology. Appl. Environ. Microbiol. 541079–1084
    [Google Scholar]
  44. Thomson A. M., Flint H. J., Bechet M., Martin J., Dubourguier H.-C. 1989; A new Escherichia coli Bacteroides shuttle vector, pRRI207, based on the Bacteroides ruminicola plasmid replicon pRRI2. Curr. Microbiol. 2449–54
    [Google Scholar]
  45. Van Gylswyk N. O. 1990; Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Ecol. 73243–254
    [Google Scholar]
  46. Wallace R. J., Brammall M. L. 1985; The role of different species of bacteria in the hydrolysis of protein in the rumen. J. Gen. Microbiol. 131821–832
    [Google Scholar]
  47. Wallace R. J., McKain N. 1991; A survey of peptidase activity in rumen bacteria. J. Gen. Microbiol. 1372259–2264
    [Google Scholar]
  48. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173697–703
    [Google Scholar]
  49. Williams A. G., Withers S. E. 1982; The production of plant cell wall polysaccharide-degrading enzymes by hemicellulolytic rumen bacterial isolates grown on a range of carbohydrate substrates. J. Appl. Bacteriol. 52377–387
    [Google Scholar]
  50. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-2-246
Loading
/content/journal/ijsem/10.1099/00207713-44-2-246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error