1887

Abstract

Abstract

Rhizobial isolates that were obtained from both surface and deep soil samples in the Sahelian and Sudano-Guinean areas of Senegal (West Africa) under trees were compared with representative strains of known rhizobial species and genera. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was used to determine the taxonomic positions of these organisms and the relationships between isolates obtained from the surface and isolates obtained from deep soil. Most of the isolates belonged to eight electrophoretic clusters containing representative strains of , , and sp. Isolates were also characterized by the Biolog system, and the results were compared with the results obtained by SDS-PAGE of total proteins; the level of correlation was very low. DNA-rRNA hybridizations with 16S or 23S rRNA from LMG 6138 (T = type strain) confirmed that most of the protein electrophoretic clusters belong in the rRNA complex. Sequencing of 16S rRNA genes showed that some of the -nodulating isolates belong to a separate lineage together with representatives of other protein electrophoretic clusters. Other isolates that belong to the same electrophoretic cluster as the type strain of are considered members of the lineage represented by this type strain. The first lineage is as far removed from as it is from the genus , , and the genus The possible relationship among electrophoretic group, geographic origin, and depth of isolation at a particular site is discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-461
1994-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-461.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-461&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  2. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41:275–280
    [Google Scholar]
  3. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomy study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38:392–397
    [Google Scholar]
  4. de Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M. D., Dreyfus B., Kersters K., Gillis M. Submitted for publication
    [Google Scholar]
  5. Devereux J., Haeberli P., Smithies D. 1984; A comprehensive set of sequence programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  6. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  7. Dupuy N. C., Dreyfus B. L. 1992; Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Appl. Environ. Microbiol. 58:2415–2419
    [Google Scholar]
  8. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., Strijdom B. W., Young J. P. W. 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41:582–587
    [Google Scholar]
  10. Green P. N., Gillis M. 1989; Classification of Pseudomonas aminovorans and some related methylated amine utilizing bacteria. J. Gen. Microbiol. 135:2071–2076
    [Google Scholar]
  11. Hollis T. A., Kloos W. E., Elkan G. H. 1981; DNA:DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. J. Gen. Microbiol. 123:215–222
    [Google Scholar]
  12. Irgens R. L., Kersters K., Segers P., Gillis M., Staley J. T. 1991; Aquabacter spiritensis gen. nov., sp. nov., an aerobic, gasvacuolate aquatic bacterium. Arch. Microbiol. 155:137–142
    [Google Scholar]
  13. Jarvis B. D. W., Downer H. L., Young J. P. W. 1992; Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42:93–96
    [Google Scholar]
  14. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  15. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136–139
    [Google Scholar]
  16. Jordan D. C. 1984; Rhizobiaceae Conn 1938, 321AL. 234–256 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  17. Kiredjian M., Holmes B., Kersters K., Guilvout J., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. Syst. Bacteriol. 38:358–361
    [Google Scholar]
  19. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum (Jordan, 1982) and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38:501–505
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  21. Lindström K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  22. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  23. Moreira F. M. S., Gillis M., Pot B., Kersters K., Franco A. A. 1993; Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative Polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16:135–146
    [Google Scholar]
  24. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  25. Pot B., Vandamme P., Kersters K. 1993; Analysis of electrophoretic whole organism protein fingerprints. 493–521 In Goodfellow M., O’Donnel A. G. (ed.) Chemical methods in prokaryotic systematics John Wiley & Sons; Chichester, England:
    [Google Scholar]
  26. Rinaudo G., Orenga S., Fernandez M. P., Meugnier H., Bardin R. 1991; DNA homologies among members of the genus Azorhizobium and other stem- and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata. Int. J. Syst. Bacteriol. 41:114–120
    [Google Scholar]
  27. Scholia M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484–486
    [Google Scholar]
  28. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  29. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol. 38:321–325
    [Google Scholar]
  30. Turk D., Keyser H. H. 1992; Rhizobia that nodulate tree legumes: specificity of the host for nodulation and effectiveness. Can. J. Microbiol. 38:451–460
    [Google Scholar]
  31. Vauterin L., Vauterin P. 1992; Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1:37–41
    [Google Scholar]
  32. Vauterin L., Vauterin P. Unpublished data
    [Google Scholar]
  33. Vincent J. M. 1970; A manual for practical study of root-nodule bacteria. International Biological Programme Handbook no. 15164 Blackwell Scientific Publications, Ltd.; Oxford:
    [Google Scholar]
  34. Willems A., Collins M. D. 1992; Evidence for a close genealogical relationship between Afipia, the causal organism of cat scratch disease, Bradyrhizobium japonicum and Blastobacter denitrificans. FEMS Microbiol. Lett. 96:241–246
    [Google Scholar]
  35. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  36. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototropic Rhizobium strain BT Ail by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
  37. Zhang X., Harper R., Karsisto M., Lindström K. 1991; Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41:104–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-461
Loading
/content/journal/ijsem/10.1099/00207713-44-3-461
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error