1887

Abstract

Abstract

The taxonomic positions of strains previously assigned to and were investigated by a polyphasic approach. The results of DNA-rRNA hybridization studies indicated that these two species belong to a separate genus in the a subclass (rRNA superfamily IV) of the , for which the name is proposed. Genus delineation and species delineation were determined by comparing the results of numerical analyses of whole-cell protein patterns, fatty acid compositions, and phenotypic characteristics and by measuring DNA base ratios and degrees of DNA relatedness. Taxonomic characteristics of and strains were compared with characteristics of reference strains belonging to the following phylogenetically related taxa: a group of organisms gathered in Enevold Falsen group 21, the genera and and the generically misclassified organisms [] and “[] .”

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-499
1994-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-499.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-499&mimeType=html&fmt=ahah

References

  1. Ballard R. W., Doudoroff M., Stanier R. Y. 1968; Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesicularis. J. Gen. Microbiol. 53:349–361
    [Google Scholar]
  2. Biising K. H., Döll W., Freytag K. 1953; Die Bakterienflora der medizinische Blutegel. Arch. Mikrobiol. 19:52–86
    [Google Scholar]
  3. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11:1–8
    [Google Scholar]
  4. Byng G. S., Johnson J. L., Whitaker R. J., Gherna R. L., Jensen R. A. 1983; The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol. 19:272–282
    [Google Scholar]
  5. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  6. De Ley J. 1992; The Proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. 2111–2140 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes 2 Springer-Verlag; New York:
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  8. De Ley J., De Smedt J. 1975; Improvements on the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  9. De Ley J., Tytgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridizations. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:461–474
    [Google Scholar]
  10. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  11. Denner E., Lubitz W., Busse H. J. 1993 Description of Chromobacterium folium as a strain of the species Sphingomonas yanoikuyae, p. 76. Abstr. FEMS Meet. Identification Bacteria Present Trends Future Prospects.
    [Google Scholar]
  12. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  13. De Vos P., Goor M., Gillis M., De Ley J. 1985; Ribosomal ribonucleic acid cistron similarities of Pseudomonas species. Int. J. Syst. Bacteriol. 35:169–184
    [Google Scholar]
  14. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  15. Falsen E. 1989 Catalogue of strains Culture Collection, University of Göteborg; Göteborg, Sweden:
    [Google Scholar]
  16. Gilardi G. L. 1978; Identification of Pseudomonas and related bacteria. 15–44 Gilardi G. L. Glucose nonfermenting Gram-negative bacteria in clinical microbiology CRC Press, Inc.; Boca Raton, Fla.:
    [Google Scholar]
  17. L. Gilardi, G. 1991; Pseudomonas and related genera. 429–441 Balows A., Hausier W. J. Jr., Herrmann K. L., Isenberg H. D., Shadomy H. J. Manual of clinical microbiology, 5th ed.. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. Gillis M., Reinhold-Hurek B. 1994; Taxonomy of Azospirillum. 1–14 Okon J. Azospirillum/plant associations CRC Press, Inc.; Boca Raton, Fla.:
    [Google Scholar]
  19. Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 34:56–70
    [Google Scholar]
  20. Leifson E., Hugh R. 1954; A new type of polar monotrichous flagellation. J. Gen. Microbiol. 10:68–70
    [Google Scholar]
  21. Marmur J. A. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  22. Moore E. R. B., Wittich R.-M., Fortnagel P., Timmis K. N. 1993; 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo-p-dioxin-degrading isolate within the new genus Sphingomonas. Lett. Appl. Microbiol. 17:115–118
    [Google Scholar]
  23. Oyaizu H., Komogata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  24. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. 141–199 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43:606–609
    [Google Scholar]
  26. Palleroni N. J., Kunisawa T., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  27. Pointdexter J. S. 1989; Genus Caulobacter Henrici and Johnson 1935. 1924–1939 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  28. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  29. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38:1409–1438
    [Google Scholar]
  30. Stahl D. A., Key R., Flesher F., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J. Bacteriol. 174:2193–2198
    [Google Scholar]
  31. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42:281–295
    [Google Scholar]
  32. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst. Appl. Microbiol. 16:227–238
    [Google Scholar]
  33. Tamaoka J., Ha D.-M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  34. van Bruggen A. H. C., Jochimsen K. N., Steinberger E. M., Segers P., Gillis M. 1993; Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int. J. Syst. Bacteriol. 43:1–7
    [Google Scholar]
  35. Vauterin L., Swings J., Kersters K. 1991; Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. J. Gen. Microbiol. 137:1677–1687
    [Google Scholar]
  36. Vauterin L., Vauterin P. 1992; Computer aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1:37–41
    [Google Scholar]
  37. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. 1991; Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int. J. Syst. Bacteriol. 41:535–542
    [Google Scholar]
  38. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 39:319–333
    [Google Scholar]
  39. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb, nov. for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol. 41:445–450
    [Google Scholar]
  40. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol. 40:384–398
    [Google Scholar]
  41. Wishart D. 1978 Clustan user’s manual, 3rd ed.. Program Library Unit, Edinburgh University; Edinburgh:
    [Google Scholar]
  42. Woese C. R., Blanz P., Hahn C. M. 1984; What isn’t a pseudomonad: the importance of nomenclature in bacterial classification. Syst. Appl. Microbiol. 5:179–195
    [Google Scholar]
  43. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov. Microbiol. Immunol. 36:1251–1275
    [Google Scholar]
  44. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov. and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119
    [Google Scholar]
  45. Yang P., De Vos P., Kersters K., Swings J. 1993; Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas. Int. J. Syst. Bacteriol. 43:709–714
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-499
Loading
/content/journal/ijsem/10.1099/00207713-44-3-499
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error