1887

Abstract

Abstract

The qualitative and quantitative monosaccharide spectra of purified yeast cell walls revealed that there are three phylogenetically distinct lineages of sterigma-forming basidiomycetous yeasts: (i) and species, which contain high levels of mannose; (ii) species, which contain glucose, galactose, and small amounts of mannose; and (iii) , and species, which appear to be closely related on the basis of their high levels of glucose and the presence of xylose. The yeast cell wall neutral sugars of and were similar to those of members of the genus However, the possibility that these taxa are conspecific was eliminated by the results of a random amplified polymorphic DNA (RAPD) analysis. The conspecificity of and the conspecificity of and , and the conspecificity of and were confirmed by RAPD analysis results. RAPD analysis was found to be a simple and highly sensitive method which can be used to differentiate species at the DNA level; it can replace nuclear DNA-nuclear DNA hybridization experiments for species identification, characterization, and delimitation.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-694
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-694.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-694&mimeType=html&fmt=ahah

References

  1. Barnett J. A., Payne R. W., Yarrow D. 1990 Yeasts: characteristics and identification, 2nd ed.. Cambridge University Press; Cambridge:
    [Google Scholar]
  2. Blanz P. A., Gottschalk M. 1986; Systematic position of Septobasidium, Graphiola and other basidiomycetes as deduced on the basis of their 5S ribosomal RNA nucleotide sequences. Syst. Appl. Microbiol. 8:121–127
    [Google Scholar]
  3. Caetano-Anolles G., Bassam B., Gresshoff P. M. 1992; Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides Mol. Gen. Genet. 235:157–165
    [Google Scholar]
  4. Dörfler C. 1990; Vergleichende Untersuchungen zum biochemischen Aufbau der Zellwand an Hefestadien von niederen und höheren Basidiomyceten. Bibl. Mycol. 129:1–164
    [Google Scholar]
  5. Fell J. W. 1966; Sterigmatomyces, a new fungal genus from marine areas. Antonie van Leeuwenhoek. J. Microbiol. Serol. 32:99–104
    [Google Scholar]
  6. Fell J. W., Kurtzman C. P. 1990; Nucleotide sequence analysis of a variable region of the large subunit rRNA for identification of marine-occurring yeasts. Curr. Microbiol. 21:295–300
    [Google Scholar]
  7. Fell J. W., Statzell A. C., Hunter I. L., Phaff H. J. 1969; Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek J. Microbiol. Serol. 35:433–462
    [Google Scholar]
  8. Fell J. W., Tallman A. Statzell. 1984; Genus 1. Leucosporidium Fell, Statzell, Hunter et Phaff. 496–508 In Kreger-van Rij N. J. W. (ed.) The yeasts: a taxonomic study, 3rd ed.. Elsevier Science Publishers; Amsterdam:
    [Google Scholar]
  9. Fell J. W., Statzell-Tallman A., Lutz M. J., Kurtzman C. P. 1992; Partial rRNA sequences in marine yeasts: a model for identification of marine eukaryotes. Mol. Mar. Biol. Biotechnol. 1:175–186
    [Google Scholar]
  10. Giménez-Jurado G., Placido T., Cidadao A. J., Cabeca-Silva C., Fonseca E., Roeijmans H. J., Eijk G. W., van Uden N. 1990; Kurtzmanomyces tardus sp. nov., a new anamorphic yeast species of basidiomycetous affinity. Antonie van Leeuwenhoek J. Microbiol. Serol. 58:129–135
    [Google Scholar]
  11. Goto S., Sugiyama J., Iizuka H. 1969; A taxonomic study of antarctic yeasts. Mycologia 61:748–774
    [Google Scholar]
  12. Guého E., Improvisi L., Christen R., de Hoog G. S. 1993; Phylogenetic relationships of Cryptococcus neoformans and some related basidiomycetous yeasts determined from partial large subunit rRNA sequences. Antonie van Leeuwenhoek J. Microbiol. Serol. 63:175–189
    [Google Scholar]
  13. Guého E., Kurtzman C. P., Peterson S. W. 1990; Phylogenetic relationships among species of Sterigmatomyces and Fellomyces as determined from partial rRNA sequences. Int. J. Syst. Bacteriol. 40:60–65
    [Google Scholar]
  14. Hamamoto M., Sugiyama J., Komagata K. 1988; Transfer of Rhodosporidium infirmominiatum to the genus Cystofilobasidium as Cystofilobasidium infirmominiatum comb. nov. J. Gen. Appl. Microbiol. 34:271–278
    [Google Scholar]
  15. Henninger W., Windisch S. 1975; A new yeast of Sterigmatomyces, S. aphidis sp. n. Arch. Microbiol. 105:49–50
    [Google Scholar]
  16. Ito H., Iizuka H., Sato T. 1974; A new radio-resistant yeast, Trichosporon oryzae nov. sp. isolated from rice. Agric. Biol. Chem. 38:1597–1602
    [Google Scholar]
  17. Kraepelin G., Schulze U. 1982; Sterigmatosporidium gen. n., a new heterothallic basidiomycetous yeast, the perfect state of a new species of Sterigmatomyces Fell. Antonie van Leeuwenhoek J. Microbiol. Serol. 48:471–483
    [Google Scholar]
  18. Kreger-van Rij N. J. W., Veenhuis M. 1971; A comparative study of the cell wall structure of basidiomycetous and related yeasts. J. Gen. Microbiol. 68:87–95
    [Google Scholar]
  19. Kubicek C. P. Technical University, Vienna, Austria 1993 Personal communication
    [Google Scholar]
  20. Kurtzman C. P. 1990; DNA relatedness among species of Sterigmatomyces and Fellomyces. Int. J. Syst. Bacteriol. 40:56–59
    [Google Scholar]
  21. Kurtzman C. P., Phaff H. J. 1987; Molecular taxonomy. 63–94 In Rose A. H., Harrison J. S. (ed.) The yeasts vol. 1. Biology of yeasts Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  22. Laaser G., Möller E., Jahnke K.-D., Bahnweg G., Prillinger H., Prell H. H. 1989; Ribosomal DNA restriction fragment analysis as a tool in separating physiologically similar basidiomycetous yeasts. Syst. Appl. Microbiol. 11:170–175
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  24. Meyer W., Koch A., Niemann C., Beyermann B., Epplen J. T., Börner T. 1991; Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr. Genet. 19:239–242
    [Google Scholar]
  25. Moore R. T. 1987; Additions to the genus Vanrija. Bibl. Mycol. 108:167–173
    [Google Scholar]
  26. Nakase T., Hamamoto M., Sugiyama J. 1991; Recent progress in the systematics of basidiomycetous yeasts. Jpn. J. Med. Mycol. 32: (Suppl.) 21–30
    [Google Scholar]
  27. Nakase T., Itoh M., Takematsu A., Mikata K., Banno I., Yamada Y. 1991; Kockovaella, a new ballistospore-forming anamorphic yeast genus. J. Gen. Appl. Microbiol. 37:175–197
    [Google Scholar]
  28. Nakase T., Takematsu A., Yamada Y. 1993; Molecular approaches to the taxonomy of ballistosporous yeasts based on the analysis of the partial nucleotide sequences of 18S ribosomal ribonucleic acids. J. Gen. Appl. Microbiol. 39:107–134
    [Google Scholar]
  29. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273
    [Google Scholar]
  30. Prillinger H., Dörfler C., Laaser G., Hauska G. 1990; Ein Beitrag zur Systematik und Entwicklungsbiologie höherer Pilze: Hefe-Typen der Basidiomyceten. Teil III: Ustilago-Typ. Z. Mykol. 56:251–278
    [Google Scholar]
  31. Prillinger H., Dörfler C., Laaser G., Lockau W. 1991; Ein Beitrag zur Systematik und Entwicklungsbiologie höherer Pilze: Hefe-Typen der Basidiomyceten. Teil II: Microbotryum-Typ.. Bot. Acta 104:5–17
    [Google Scholar]
  32. Prillinger H., Laaser G., Dörfler C., Ziegler K. 1991; Ein Beitrag zur Systematik und Entwicklungsbiologie höherer Pilze: Hefe-Typen der Basidiomyceten. Teil IV: Dacrymyces-Typ,Tremella-Typ. Sydowia Ann. Mycol. 43:170–218
    [Google Scholar]
  33. Prillinger H., Oberwinkler F., Umile C., Tlachac K., Bauer R., Dörfler C., Taufratzhofer E. 1993; Analysis of cell wall carbohydrates (neutral sugars) from ascomycetous and basidiomycetous yeasts with and without derivatization. J. Gen. Appl. Microbiol. 39:1–34
    [Google Scholar]
  34. Ralph D., McClelland M., Welsh J., Baranton G., Perolat P. 1993; Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J. Bacteriol. 175:973–981
    [Google Scholar]
  35. Säämänen A.-M., Tammi M. 1988; A sensitive GLC-method for component sugars and O-glycosidic linkage monosaccharides of. cartilage proteoglycans. Glycoconjugate 5:235–243
    [Google Scholar]
  36. Schäfer C, Wöstemeyer J. 1992; Random primer dependent PCR differentiates aggressive from nonaggressive isolates of the oilseed rape pathogen Phoma lingam. J. Phytopathol. 136:124–136
    [Google Scholar]
  37. Suh S.-O., Hirata A., Sugiyama J., Komagata K. 1993; Septal ultrastructure of basidiomycetous yeasts and their taxonomic implications with observations on the ultrastructure for Erythrobasidium hasegawianum and Sympodiomycopsis paphiopedili. Mycologia 85:30–37
    [Google Scholar]
  38. Tindali B. J. Extraction and analysis of respiratory lipoquinone from microorganisms DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Braunschweig, Germany:
    [Google Scholar]
  39. Vancanneyt M., Van Lerberge E., Berny J.-F., Hennebert G. L., Kersters K. 1992; The application of whole-cell protein electrophoresis for the classification and identification of basidiomycetous yeast species. Antonie van Leeuwenhoek J. Microbiol. Serol. 61:69–78
    [Google Scholar]
  40. van der Walt J. P., Yamada Y., Ferreira N. W., Richards P. D. G. 1987; New basidiomycetous yeasts from Southern Africa. II. Sterigmatomyces wingfieldii sp. n. Antonie van Leeuwenhoek J. Microbiol. Serol. 53:137–142
    [Google Scholar]
  41. Vilgalys R., Hester M. 1990; Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172:4238–4246
    [Google Scholar]
  42. Walker W. F., Doolittle W. F. 1983; 5S rRNA sequences from eight basidiomycetes and fungi imperfecti. Nucleic Acids Res. 11:7625–7630
    [Google Scholar]
  43. Welsh J., McClelland M. 1990; Fingerprint genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218
    [Google Scholar]
  44. White T. J., Bruns T. D., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. 315–322 In Innis M. A., Gelfand D. H., Sininski J. J., White T. J. (ed.) PCR protocols Academic Press; San Diego, Calif:
    [Google Scholar]
  45. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990; DNA-polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535
    [Google Scholar]
  46. Yamada Y., Banno I. 1984; The coenzyme Q system in strains of species in the genus Sterigmatomyces (Cryptococcaceae) and its teleomorphic genus Sterigmatosporidium. Trans. Mycol. Soc. Jpn. 25:455–460
    [Google Scholar]
  47. Yamada Y., Itoh M., Kawjasaki H., Banno I., Nakase T. 1988; Kurtzmanomyces gen. nov., an anamorphic yeast genus for the Q-10-equipped organism whose conidium is freed by an end-break in the sterigma which branches or elongates to produce additional conidia and whose cells contain no xylose. J. Gen. Appl. Microbiol. 34:503–506
    [Google Scholar]
  48. Yamada Y., Kawasaki H. 1989; The molecular phylogeny of the Q-8-equipped basidiomycetous yeast genera Mrakia Yamada et Komagata and Cystofilobasidium Oberwinkler et Bandoni based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J. Gen. Appl. Microbiol. 35:173–183
    [Google Scholar]
  49. Yamada Y., Kawasaki H., Itoh M., Banno I., Nakase T. 1988; Tsuchiyaea gen. nov., an anamorphic yeast genus for the Q-9-equipped organism whose reproduction is either by enteroblastic budding or by the formation of conidia which are disjointed at a septum in the mid-region of the sterigmata and whose cells contain xylose. J. Gen. Appl. Microbiol. 34:507–510
    [Google Scholar]
  50. Yamada Y., Kawasaki H., Nakase T., Banno I. 1989; The phylogenetic relationship of the conidium-forming anamorphic yeast genera Sterigmatomyces, Kurtzmanomyces, Tsuchiyaea, and Fellomyces and the teleomorphic yeast genus Sterigmatosporidium on the basis of the partial sequences of 18S and 26S ribosomal ribonucleic acids. Agric. Biol. Chem. 53:2993–3001
    [Google Scholar]
  51. Yamada Y., Komagata K. 1987; Mrakia gen. nov., a heterobasidiomycetous yeast genus for the Q-8-equipped, self-sporulating organisms which produce a unicellular metabasidium formerly classified in the genus Leucosporidium. J. Gen. Appl. Microbiol. 33:455–457
    [Google Scholar]
  52. Yamada Y., Matsumoto A. 1988; An electrophoretic comparison of enzymes in strains of species in the genus Mrakia Yamada et Komagata (Filobasidiaceae). J. Gen. Appl. Microbiol. 34:201–208
    [Google Scholar]
  53. Yamada Y., Nagahama T., Banno I., Giménez-Jurado G., van Uden N. 1991; The phylogenetic relationship of Kurtzmanomyces tardus Giménez-Jurado et van Uden (Cryptococcaceae) based on the partial sequences of 18S and 26S ribosomal RNA’s. J. Gen. Appl. Microbiol. 37:321–324
    [Google Scholar]
  54. Yamada Y., Nagahama T., Kawasaki H., Banno I. 1990; The phylogenetic relationship of the genera Phaffia Miller, Yoneyama et Soneda and Cryptococcus Kützing emend. Phaff et Spencer (Cryptococcaceae) based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J. Gen. Appl. Microbiol. 36:403–414
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-694
Loading
/content/journal/ijsem/10.1099/00207713-44-4-694
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error