1887

Abstract

Abstract

A novel extremely halophilic archaeon (archaebacterium) was isolated from rock salt obtained from an Austrian salt mine. The deposition of the salt is thought to have occurred during the Permian period (225 × 10 to 280 × 10 years ago). This organism grew over a pH range of 6.8 to 9.5. Electron microscopy revealed cocci in tetrads or larger clusters. The partial 16S rRNA sequences, polar lipid composition, and menaquinone content suggested that this organism was related to members of the genus while the whole-cell protein patterns, the presence of several unknown lipids, and the presence of pink pigmentation indicated that it was different from previously described coccoid halophiles. We propose that this isolate should be recognized as a new species and should be named The type strain is Blp (= ATCC 51437 = DSM 8989). A chemotaxonomically similar microorganism was isolated from a British salt mine.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-774
1994-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-774.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-774&mimeType=html&fmt=ahah

References

  1. Collins M. D., Ross H. N. M., Tindall B. J., Grant W. D. 1981; Distribution of isoprenoid quinones in halophilic bacteria. J. Appl. Bacteriol. 50:559–565
    [Google Scholar]
  2. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J. Bacteriol. 70:484–485
    [Google Scholar]
  3. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees based on mutation distance as estimated from cytochrome c sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  4. Grant W. D. 1989; Genus VI. Natronococcus. 2232–2233 In Staley J. T., Bryant M. P., Pfennig N., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 3 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  5. Grant W. D., Larsen H. 1989; Extremely halophilic archaeobacteria, order Halobacteriales ord. nov.. 2216–2233 In Staley J. T., Bryant M. P., Pfennig N., Holt J. G. (ed.) Bergey's manual of systematic bacteriology vol. 3 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  6. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol. 19:209–225
    [Google Scholar]
  7. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism vol. 3 Academic Press; New York:
    [Google Scholar]
  8. Kamekura M., Oesterhelt D., Wallace R., Anderson P., Kushner D. J. 1988; Lysis of halobacteria in Bacto-Peptone by bile acids. Appl. Environ. Microbiol. 54:990–995
    [Google Scholar]
  9. Kostrikina N. A., Zvyagintseva I. S., Duda V. I. 1991; Cytological peculiarities of some extremely halophilic soil archaeobacteria. Arch. Microbiol. 156:344–349
    [Google Scholar]
  10. Kroppenstedt R. M. 1982; Anwendung chromatographischer HP-Verfahren (HPTLC und HPLC) in der Bakterien-Taxonomie. GIT Labor Med. 5:266–275
    [Google Scholar]
  11. Larsen H. 1989; Genus IV. Halococcus. 2228–2230 In Staley J. T., Bryant M. P., Pfennig N., Holt J. G. (ed.) Bergey's manual of systematic bacteriology vol. 3 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  12. Malik K. A. 1983; A modified method for the cultivation of phototrophic bacteria under anaerobic conditions. J. Microbiol. Methods 1:343–352
    [Google Scholar]
  13. McGenity T. J., Grant W. D. 1993; The haloalkaliphilic archaeon (archaebacterium) Natronococcus occultus represents a distinct lineage within the Halobacteriales, most closely related to the other haloalkaliphilic lineage (Natronobacterium). Syst. Appl. Microbiol. 16:239–243
    [Google Scholar]
  14. McGenity T. J., Zvyagintseva I. S., Grant W. D. Unpublished data
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  16. Montero C. G., Ventosa A., Rodriguez-Valera F., Kates M., Moldoveanu N., Ruiz-Berraquero F. 1989; Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol. 12:167–171
    [Google Scholar]
  17. Norton C. F., Grant W. D. 1988; Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134:1365–1373
    [Google Scholar]
  18. Norton C. F., McGenity T. J., Grant W. D. 1993; Archaeal halophiles (halobacteria) from two British salt mines. J. Gen. Microbiol. 139:1077–1081
    [Google Scholar]
  19. Reistad R. 1970; On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch. Mikrobiol. 71:353–360
    [Google Scholar]
  20. Rodriguez-Valera F. 1988; Characteristics and microbial ecology of hypersaline environments. 4–30 In Rodriguez-Valera F. (ed.) Halophilic bacteria vol. 1 CRC Press; Boca Raton, Fla:
    [Google Scholar]
  21. Ross H. N. M., Grant W. D., Harris J. E. 1985; Lipids in archaebacterial taxonomy. 289–299 In Goodfellow M., Minnekin D. E. (ed.) Chemical methods in bacterial systematics Academic Press; London:
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1981; General characterization. 40943 In Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  23. Stan-Lotter H., Lang F. J. Jr., Hochstein L. I. 1989; Electrophoresis and isoelectric focusing of whole cell membrane proteins from the extremely halophilic archaebacteria. Appl. Theor. Electrophor. 1:147–153
    [Google Scholar]
  24. Stan-Lotter H., Sulzner M., Egelseer E., Norton C. F., Hochstein L. I. 1993; Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits. Origins Life 23:53–64
    [Google Scholar]
  25. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13:128–130
    [Google Scholar]
  26. Tindall B. J., Mills A A., Grant W. D. 1980; An alkaliphilic red halophilic bacterium with low magnesium requirement from a Kenyan soda lake. J. Gen. Microbiol. 116:257–260
    [Google Scholar]
  27. Tomlinson G. A., Hochstein L. I. 1976; Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 22:587–591
    [Google Scholar]
  28. Visuvanathan S., Moss V. S., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J. Microbiol. Methods 10:59–64
    [Google Scholar]
  29. Witte A., Wanner G., Bläsi U., Halfmann G., Szostak M., Lubitz W. 1990; Endogenous transmembrane tunnel formation mediated by ϕX174 lysis protein E. J. Bacteriol. 172:4109–4114
    [Google Scholar]
  30. Zharkov M. A. 1981 History of paleozoic salt accumulation Springer Verlag; Berlin:
    [Google Scholar]
  31. Zvyagintseva I. S., Tarasov A L. 1987; Extreme halophilic bacteria from soils. Microbiology (Engl. Transi. Mikrobiologiya) 56:839–844
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-774
Loading
/content/journal/ijsem/10.1099/00207713-44-4-774
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error