1887

Abstract

A thermophilic sulfate-reducing bacterium, , is described. This bacterium was isolated from produced formation water from a North Sea petroleum reservoir. In liquid culture, the cells are oval, 1.5 by 2.5 to 3 μm, nonmotile and gram negative. Spore formation has not been observed. Growth occurs at temperatures ranging from 40 to 65°C, with optimum growth occurring at 60°C, and at levels of salinity ranging from 0 to 50 g of NaCl per liter, with optimum growth occurring in the presence of 10 g of NaCl per liter. . grows on a range of organic acids, including formate, acetate, butyrate, and palmitate, and alcohols. . can grow autotrophically with H. A vitamin supplement is required for growth. Sulfite and thiosulfate are used as electron acceptors. Sulfur and nitrate are not reduced. The DNA base composition is 64 mol% G+C. Phylogenetically, . clusters with members of the delta subdivision of the . Its closest relatives are (level of similarity, 90.6%) and (level of similarity, 87.1%).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-1-85
1995-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/1/ijs-45-1-85.html?itemId=/content/journal/ijsem/10.1099/00207713-45-1-85&mimeType=html&fmt=ahah

References

  1. Aeckersberg F., Bak F., Widdel F. 1991; Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol 156:5–14
    [Google Scholar]
  2. Battersby N. S., Stewart D. J., Sharma A. P. 1985; Microbiological problems in the offshore oil and gas industries. J. Appl. Bacteriol. Symp. Suppl 59:227S–235S
    [Google Scholar]
  3. Boone D. R., Bryant M. P. 1980; Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol 40:626–632
    [Google Scholar]
  4. Brysch K., Schneider C., Fuchs G., Widdel F. 1987; Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol 148:264–274
    [Google Scholar]
  5. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol 44:992–993
    [Google Scholar]
  6. Carothers W. W., Kharaka Y. K. 1978; Aliphatic acid anions in oil-field waters—implications for the origin of natural gas. AAPG (Am. Assoc. Pet. Geol.) Bull 62:2441–2453
    [Google Scholar]
  7. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J. Bacteriol 171:6689–6695
    [Google Scholar]
  8. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol 172:3609–3619
    [Google Scholar]
  9. Devereux R., Kane M. D., Winfrey J., Stahl D. A. 1992; Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol 15:601–609
    [Google Scholar]
  10. DeWeerd K. A., Mandelco L., Tanner R. S., Woese C. R., Suflita J. M. 1990; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol 154:23–30
    [Google Scholar]
  11. Doetsch R. N. 1981; Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  12. Dorner C. 1992 Ph.D thesis Eberhard-Karls-Universitàt; Tübingen, Germany:
    [Google Scholar]
  13. Felsenstein J. 1993 PHYLIP (phylogenetic inference package) version 3.5.1 Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  14. Galushko A. S., Rozanova E. P. 1992; Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology (Engl. Transl. Mikrobiologiya) 60:742–746
    [Google Scholar]
  15. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stains A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol 160:238–240
    [Google Scholar]
  16. Henry E. A., Devereux R., Maki J. S., Gilmour C. C., Woese C. R., Mandelco L., Schauder R., Remsen C. C., Mitchell R. 1994; Characterization of a new thermophilic sulfate-reducing bacterium, Thermodesulfovibrio yellowstonii gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins within the bacterial domain. Arch. Microbiol 161:62–69
    [Google Scholar]
  17. Herbert B. N., Gilbert P. D., Stockdale H., Watkinson R. J. 1985; Factors controlling the activity of sulphate-reducing bacteria in reservoirs during water injection. Proceedings of the Conference on “Offshore Europe ‘85.” Soc. Petroleum Eng. SPE 13978/10:1–10
    [Google Scholar]
  18. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol 136:194–198
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism 3 Academic Press; New York:
    [Google Scholar]
  20. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  21. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the great artesian basin of Australia. Syst. Appl. Microbiol 16:244–251
    [Google Scholar]
  22. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. 1992; Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol 42:398–403
    [Google Scholar]
  23. Marmur M. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  24. Marmur M., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  25. Nazina T. N., Rozanova E. P. 1978; Thermophilic sulfate-reducing bacteria from oil strata. Microbiology (Engl. Transl. Mikrobiologiya) 47:113–118
    [Google Scholar]
  26. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol. Lett 7:277–278
    [Google Scholar]
  27. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol 141:63–69
    [Google Scholar]
  28. Postgate J. R. 1956; Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J. Gen. Microbiol 14:545–572
    [Google Scholar]
  29. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans. Nature (London) 183:481–82
    [Google Scholar]
  30. Postgate J. R. 1979 The sulphate-reducing bacteria Cambridge University Press; London:
    [Google Scholar]
  31. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett 113:81–86
    [Google Scholar]
  32. Rosnes J. T., Torsvik T., Lien T. 1991; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol 57:2302–2307
    [Google Scholar]
  33. Rozanova E. P., Khudyakova A. I. 1973; Sulfate-reducing bacteria from oil beds of the Apsheron. Microbiology (Engl. Transl. Mikrobiologiya) 42:115–118
    [Google Scholar]
  34. Rozanova E. P., Khudyakova A. I. 1974; A new nonspore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology (Engl. Transl. Mikrobiologiya) 43:908–912
    [Google Scholar]
  35. Rozanova E. P., Nazina T. N., Galushko A. S. 1988; Isolation of a new genus of sulfate-reducing bacteria and description of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (Engl. Transl. Mikrobiologiya) 57:514–520
    [Google Scholar]
  36. Scott P. J. B., Davies M. 1993; Souring of new Irian Jaya wells traced to indigenous bacteria. Oil Gas J 91:47–50
    [Google Scholar]
  37. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.”. Int. J. Syst. Bacteriol 38:321–325
    [Google Scholar]
  38. Stetter K. O. 1988; Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol 10:172–173
    [Google Scholar]
  39. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archea are thriving in deep North sea and Alaskan oil reservoirs. Nature (London) 365:743–745
    [Google Scholar]
  40. Van de Peer Y., De Wachter R. 1992; TREECON: a software package for the construction and drawing of evolutionary trees. CABIOS 9:117–182
    [Google Scholar]
  41. Widdel F. 1992; The genus Desulfotomaculum. 1792–1799 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2. Springer-Verlag; New York:
    [Google Scholar]
  42. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. 3352–3378 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2. Springer-Verlag; New York:
    [Google Scholar]
  43. Widdel F., Hansen T. A. 1992; The dissimilatory sulfate- and sulfur-reducing bacteria. 583–624 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2. Springer-Verlag; New York:
    [Google Scholar]
  44. Winker S., Woese C. R. 1991; A definition of the domains Archaea Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol 14:305–310
    [Google Scholar]
  45. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem 238:2882–2886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-1-85
Loading
/content/journal/ijsem/10.1099/00207713-45-1-85
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error