1887

Abstract

Strains of a previously undescribed species of purple nonsulfur phototrophic bacteria were isolated from coastal seawater in Japan. These new isolates were gram-negative, motile, budding rods that contained lamellar intracytoplasmic membranes and produced pink to red cultures. Cell extracts of photosynthetic cultures exhibited absorption maxima at 377, 468, 500, 530, 591, 802, and 870 nm, indicating that bacterio-chlorophyll and carotenoids of the spirilloxanthin series were present. The new isolates were halophilic, facultatively aerobic photoheterotrophs that grew anaerobically in the light or aerobically in the dark. Maximum growth occurred in the presence of 4 to 5% NaCl. Anaerobic growth in the dark with nitrate as a terminal electron acceptor also occurred. Various organic compounds were used as photosynthetic electron donors and carbon sources. Sulfate was used as a sulfur source. Both menaquinone 10 and ubiquinone 10 were produced; these quinones were the major quinones. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MB312(T = type strain), a representative of the new phototrophs, was a member of a lineage that was distinct from members of the genus was the closest relative. On the basis of the data described above, we propose the name gen. nov., sp. nov. for the new isolates. We also propose that Imhoff 1983 should be transferred to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-226
1995-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-226.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-226&mimeType=html&fmt=ahah

References

  1. Amako K., Takade A. 1985; The fine structure of Bacillus subtilis revealed by the rapid-freezing and substitution-fixation method. J. Electron Microsc 34:13–17
    [Google Scholar]
  2. Ambler R. P., Daniel M., Hermoso J., Meyer T. E., Bartsch R. G., Kamen M. D. 1979; Cytochrome c2 sequence variation among the recognized species of purple nonsulphur photosynthetic bacteria. Nature (London) 278:659–660
    [Google Scholar]
  3. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc. Natl. Acad. SciUSA 75:4801–4805
    [Google Scholar]
  4. De Ley J. 1992; The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. 2111–2140 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes,, 2. Springer-Verlag; Berlin:
    [Google Scholar]
  5. Dickerson R. E. 1980; Evolution and gene transfer in purple photosynthetic bacteria. Nature (London) 283:210–212
    [Google Scholar]
  6. Eckersley K., Dow C. S. 1980; Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae . J. Gen. Microbiol 119:465–473
    [Google Scholar]
  7. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Liu S., Yabuuchi E. 1988; Simple and rapid genetic identification of Legionella species with photobiotin-labeled DNA. J. Gen. Appl. Microbiol 34:191–199
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  9. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci 8:189–191
    [Google Scholar]
  10. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett. Appl. Microbiol 15:210–213
    [Google Scholar]
  11. Hiraishi A., Hoshino Y. 1984; Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J. Gen. Appl. Microbiol 30:435–448
    [Google Scholar]
  12. Hiraishi A., Hoshino Y., Kitamura H. 1984; Isoprenoid quinone composition in the classification of Rhodospirillaceae . J. Gen. Appl. Microbiol 30:197–210
    [Google Scholar]
  13. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch. Microbiol 155:330–336
    [Google Scholar]
  14. Hiraishi A., Kitamura H. 1984; Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull. Jpn. Soc. Sci. Fish 50:1929–1937
    [Google Scholar]
  15. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated se-quencing of PCR-amplified 16S rDNA on “Hydrolink” gels. J. Microbiol. Methods 19:145–154
    [Google Scholar]
  16. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Rhodobacter. transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int. J. Syst. Bacteriol 44:15–25
    [Google Scholar]
  17. Hiraishi A., Ueda Y. 1994; Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int. J. Syst. Bacteriol 44:665–673
    [Google Scholar]
  18. Imhoff J. F. 1983; Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst. Appl. Microbiol 4:512–521
    [Google Scholar]
  19. Imhoff J. F. 1984; Quinone of phototrophic purple bacteria. FEMS Microbiol. Lett 25:85–89
    [Google Scholar]
  20. Imhoff J. F., Trüper H. G. 1992; The genus Rhodospirillum and related genera. 2141–2155 Balow A., Tuper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes,, 2. Springer-Verlag; Berlin:
    [Google Scholar]
  21. Imhoff J. F., Trüper H. G., Pfennig N. 1984; Rearrangements of the species and genera of the phototrophic “purple nonsulfur bacteria.”. Int. J. Syst. Bacteriol 34:340–343
    [Google Scholar]
  22. Janssen P. H., Harfoot C. G. 1991; Rhodopseudomonas rosea sp. nov., a new purple nonsulfur bacterium. Int. J. Syst. Bacteriol 41:26–30
    [Google Scholar]
  23. Kato S., Urakami T., Komagata K. 1985; Quinone systems and cellular fatty acid composition in species of Rhodospirillaceae genera. J. Gen. Appl. Microbiol 31:381–398
    [Google Scholar]
  24. Kawasaki H., Hoshino Y., Hirata A., Yamasato K. 1993; Is intracyto-plasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch. Microbiol 160:358–362
    [Google Scholar]
  25. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  26. Klemme J. H., Chyla I., Preuss M. 1980; Dissimilatory nitrate reduction by strains of the facultative phototrophic bacterium Rhodopseudomonas palustris . FEMS Microbiol. Lett 9:137–140
    [Google Scholar]
  27. Mangels L. A., Favinger J. L., Madigan M. T., Gest H. 1986; Isolation and characterization of the N2-fixing marine photosynthetic bacterium Rhodopseudomonas marina, variety agilis . FEMS Microbiol. Lett 36:99–104
    [Google Scholar]
  28. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  29. Orso S., Gouy M., Navarro E., Normand P. 1994; Molecular phylogenetic analysis of Nitrobacter spp. Int. J. Syst. Bacteriol 44:83–86
    [Google Scholar]
  30. Roppel J., Mayer H., Wekesser J. 1975; Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris . Carbohydr. Res 40:31–40
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  32. Satoh T., Hoshino Y., Kitamura H. 1976; Rhodopseudomonas sphae-roides forma sp. denitrificans, a denitrifying strain as a subspecies of Rho-dopseudomonas sphaeroides . Arch. Microbiol 108:265–269
    [Google Scholar]
  33. Seewaldt E., Schleifer K. H., Bock E., Stackebrandt E. 1982; The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris . Arch. Microbiol 131:287–290
    [Google Scholar]
  34. Tegtmeyer B., Weckesser J., Mayer H., Imhoff J. F. 1985; Chemical composition of the lipopolysaccharides of Rhodobacter sulfidophilus, Rhodopseudomonas acidophila, and Rhodopseudomonas blastica . Arch. Microbiol 143:32–36
    [Google Scholar]
  35. Trüper H. G., Imhoff J. F. 1989; Genus Rhodopseudomonas Kluyver and van Niel in Czurda and Maresch 1937, 119AL. 1672–1677 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  36. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  37. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol 5:315–326
    [Google Scholar]
  38. Wong F. Y. K., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. 1994; Phylogenetic analysis of Bradyrhizobium japonkum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Appl. Environ. Microbiol 60:940–946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-226
Loading
/content/journal/ijsem/10.1099/00207713-45-2-226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error