1887

Abstract

In the past workers have isolated several pseudomonad strains which have been used for studies of anaerobic aromatic metabolism. The best studied of these strains are strains KB 740 (T = type strain) and K172. The taxonomic positions of these two organisms were determined by classical methods, including experiments to determine substrate spectrum, quinone type, and total fatty acid composition. Our results clearly excluded these strains from the authentic genus , which belongs to the gamma subclass of the . Instead, the properties of these organisms indicated that they belong to the beta subclass of the . The sequences of the 16S ribosomal DNA genes confirmed this conclusion and indicated that strain K 172 represents a new species of the genus , , and that strain KB 740 represents a new species of the genus , .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-327
1995-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-327.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-327&mimeType=html&fmt=ahah

References

  1. Altenschmidt U., Fuchs G. 1991; Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate.. Arch. Microbiol. 156:152–158
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (ed.). 1994; Current protocols in molecular biology. John Wiley and Sons, Inc.; New York:
    [Google Scholar]
  3. Bergan T. 1981; Human- and animal-pathogenic members of the genus Pseudomonas . 666–700 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. The prokaryotes 1 Springer-Verlag; Berlin:
    [Google Scholar]
  4. Braun K., Gibson D. T. 1984; Anaerobic degradation of 2-amjnoben-zoate (anthranilic acid) by denitrifying bacteria. Appl. Environ. Microbiol. 48:102–107
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc. Natl. Acad. SciUSA 75:4801–4805
    [Google Scholar]
  6. Busse H. J., El-Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl. Environ. Microbiol. 55:1578–1583
    [Google Scholar]
  7. Busse H. J., El-Banna T., Oyaizu H., Auling G. 1992; Identification of xenobiotic-degrading isolates from beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int. J. Syst. Bacteriol. 42:19–26
    [Google Scholar]
  8. Casanova J.-L., Pannetier C., Jauün C., Kourilsky P. 1990; Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 18:4028
    [Google Scholar]
  9. Collins M. D. 1985; Isoprenoid quinone analysis in bacterial classification and identification,. 267–288 Goodfellow M., Minnikin D. E. Chemical methods in bacterial systematics Academic Press; New York:
    [Google Scholar]
  10. Dangel W., Brackmann R., Lack A., Mohammed M., Koch J., Oswald B., Seyfried B., Tschech A., Fuchs G. 1991; Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA.. Arch. Microbiol. 155:256–262
    [Google Scholar]
  11. De Vos P., van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  12. Felsenstein J. 1982; Numerical methods for inferring phylogenetic trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  13. Fries M. C., Zhou J., Chee-Sanford J., Tiedje J. M. 1994; Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol. 60:2802–2810
    [Google Scholar]
  14. Fuchs G., Mohamed M., Altenschmidt U., Koch J., Lack A., Brackmann R., Lochmeyer C., Oswald B. 1994; Biochemistry of anaerobic biodegradation of aromatic compounds,. 513–553 Ratledge C. Biochemistry of microbial degradation Kluwer Academic Publishers; Dordrecht, The Netherlands:
    [Google Scholar]
  15. Harwood C. S., Gibson J. 1988; Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris . Appl. Environ. Microbiol. 54:712–717
    [Google Scholar]
  16. Hiraishi A., Shin Y. K., Sugiyama J., Komagata K. 1992; Isoprenoid quinones and fatty acids of Zoogloea . Antonie Leeuwenhoek 61:231–236
    [Google Scholar]
  17. Höfle M. G. 1992; Rapid genotyping of pseudomonads by using low-molecular-weight RNA profiles,. 116–126 Galli E., Silver S., Witholt B. Pseudomonas: molecular biology and biotechnology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. Holt J. G., Krieg N. R., Sneath P. H. A, Staley J. T., Williams S. T. (ed.). 1994; Bergey’s manual of determinative bacteriology,. , 9.101 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Kämpfer P., Bark K., Busse H. J., Auling G., Dott W. 1992; Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate:AMP phosphotransferase (PPAT) activity. Syst. Appl. Microbiol. 15:409–419
    [Google Scholar]
  20. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb. Ecol. 21:227–251
    [Google Scholar]
  21. Larsen N., Olsen G. J., Maidak B. L., McCaughey N. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res. 21:3021–3023
    [Google Scholar]
  22. Lysenko O. 1961; Pseudomonas—an attempt at a general classification. J. Gen. Microbiol. 25:379–408
    [Google Scholar]
  23. Macy J. M., Rech S., Auling G., Dorsch M., Stackebrandt E., Sly L. I. 1993; Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43:135–142
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  25. Medlin L., Elwood H. J., Stickel S., Sogin M. L. 1988; The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499
    [Google Scholar]
  26. Mezei L. 1991; Direct purification of PCR product from amplification reactions. Promega note 34 Promega Corp.; Madison, Wis:
    [Google Scholar]
  27. Mohamed M., Seyfried B., Tschech A., Fuchs G. 1993; Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifying Pseudomonas sp.. Arch. Microbiol. 159:563–573
    [Google Scholar]
  28. Mullis K. B., Faloona F. 1987; Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol. 155:335–350
    [Google Scholar]
  29. Neefs J. M., De Rljk P., Van de Peer Y., Chapelle S., De Wachter R. 1993; Combination of small ribosomal subunit RNA structures. Nucleic Acids Res. 21:3025–3049
    [Google Scholar]
  30. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  31. Palleroni N. J. 1984; Gram negative aerobic rods and cocci,. 141–219 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  32. Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol in press
    [Google Scholar]
  33. Rech S. A., Macy J. M. 1992; The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J. Bacteriol. 174:7316–7320
    [Google Scholar]
  34. Reinhold-Hurek B. Personal communication
    [Google Scholar]
  35. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J. 1993; Azoarcus gen. nov., nitrogen fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int. J. Syst. Bacteriol. 43:574–584
    [Google Scholar]
  36. Rosselló-Mora R. A., Ludwig W., Schleifer K. H. 1993; Zoogloea ramigera: a phylogenetically diverse species. FEMS Microbiol. Lett. 114:129–134
    [Google Scholar]
  37. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. SciUSA 74:5463–5467
    [Google Scholar]
  39. Schennen U., Braun K., Knackmuss H. J. 1985; Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J. Bacteriol. 161:321–325
    [Google Scholar]
  40. Schocher R. J., Seyfried B., Vazquez F., Zeyer J. 1991; Anaerobic degradation of toluene by pure cultures of denitrifying bacteria.. Arch. Microbiol. 157:7–12
    [Google Scholar]
  41. Seyfried B., Tschech A., Fuchs G. 1991; Anaerobic degradation of phenylacetate and 4-hydroxyphenylacetate by denitrifying bacteria.. Arch. Microbiol. 155:249–255
    [Google Scholar]
  42. Stead D. E. 1992; Grouping of plant pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42:281–295
    [Google Scholar]
  43. Strunk O., Ludwig W. Unpublished data
  44. Tschech A., Fuchs G. 1987; Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads.. Arch. Microbiol. 148:213–217
    [Google Scholar]
  45. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol. 41:445–450
    [Google Scholar]
  46. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol. 40:384–398
    [Google Scholar]
  47. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25–33
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-327
Loading
/content/journal/ijsem/10.1099/00207713-45-2-327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error