1887

Abstract

Wine strains belonging to the genus were classified as by Garvie in 1967, and this name was confirmed on the Approved Lists of Bacterial Names in 1980. is distinguished from other spp. by its growth in acidic media, by its requirement for a growth factor in tomato juice, and by a number of carbohydrate fermentation characteristics. In addition, the results of a total soluble cell protein analysis, an electrophoretic analysis of NAD-dependent -(–)-lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and alcohol dehydrogenase, and an analysis of cross-reactivity with anti-glucose-6-phosphate dehydrogenase and anti-NAD-dependent -(–)-lactate dehydrogenase performed with other spp. clearly indicated that should be distinguished from the other Leuconostoc species. Phylogenetic studies, in particular 16S and 23S rRNA sequencing studies, have revealed that represents a distinct subline that is separate from other spp. and lactic acid bacteria. In view of the phenotypic and phylogenetic distinctiveness of we propose that this species should be assigned to a new genus as [corrig.] gen. nov., comb. nov. The type strain of is NCDO 1674 (= ATCC 23179).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-395
1995-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-395.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-395&mimeType=html&fmt=ahah

References

  1. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weisseila for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75:595–603
    [Google Scholar]
  2. Dicks L. M. T., Fantuzzi L., Gonzalez F. C., Du Toit M., Dellaglio F. 1993; Leuconostoc argentinum sp. nov., isolated from Argentine raw milk. Int. J. Syst. Bacteriol. 43:347–351
    [Google Scholar]
  3. Dicks L. M. T., van Vuuren H. J. J. 1990; Differentiation of Leuconostoc species by nicotinamide adenine dinucleotide-dependent d(–)-lactic dehydrogenase profiles. FEMS Microbiol. Lett. 67:9–14
    [Google Scholar]
  4. Dicks L. M. T., van Vuuren H. J. J., Dellaglio F. 1990; Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions, and DNA-DNA hybridizations. Int. J. Syst. Bacteriol. 40:83–91
    [Google Scholar]
  5. Farrow J. A. E., Facklam R. R., Collins M. D. 1989; Nucleic acid homologies of some vancomycin-resistant leuconostocs and description of Leuconostoc citreum sp. nov. and Leuconostoc pseudomesenteroides sp. nov. Int. J. Syst. Bacteriol. 39:279–283
    [Google Scholar]
  6. Garvie E. I. 1967; Leuconostoc oenos sp. nov. J. Gen. Microbiol. 48:431–438
    [Google Scholar]
  7. Garvie E. I. 1969; Lactic dehydrogenases of strains of the genus Leuconostoc . J. Gen. Microbiol. 58:85–94
    [Google Scholar]
  8. Garvie E. I. 1976; Hybridization between the deoxyribonucleic acids of some strains of heterofermentative lactic acid bacteria. Int. J. Syst. Bacteriol. 26:116–122
    [Google Scholar]
  9. Garvie E. I. 1981; Sub-divisions within the genus Leuconostoc as shown by RNA/DNA hybridization. J. Gen. Microbiol. 127:209–212
    [Google Scholar]
  10. Garvie E. I. 1983; Leuconostoc mesenteroides subsp. cremoris (Knudsen and Sorensen) comb. nov. and Leuconostoc mesenteroides subsp. dextranicum (Beijerinck) comb. nov. Int. J. Syst. Bacteriol. 33:118–119
    [Google Scholar]
  11. Garvie E. I. 1986; Genus Leuconostoc. 1071–1075 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  12. Garvie E. I., Farrow J. A. E. 1980; The differentiation of Leuconostoc oenos from non-acidophilic species of Leuconostoc, and the identification of five strains from the American Type Culture Collection. Am. J. Enol. Vitic. 31:154–157
    [Google Scholar]
  13. Gasser F., Hontebeyrie M. 1977; Immunological relationships of glucoses-phosphate dehydrogenase of Leuconostoc mesenteroides NCDO 768 (= ATCC 12291). Int. J. Syst. Bacteriol. 27:6–8
    [Google Scholar]
  14. Hontebeyrie M., Gasser F. 1975; Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc . Int. J. Syst. Bacteriol. 25:1–6
    [Google Scholar]
  15. Hontebeyrie M., Gasser F. 1977; Deoxyribonucleic acid homologies in the genus Leuconostoc . Int. J. Syst. Bacteriol. 27:9–14
    [Google Scholar]
  16. Martinez-Murcia A. J., Collins M. D. 1990; A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. FEMS Microbiol. Lett. 70:73–84
    [Google Scholar]
  17. Martinez-Murcia A. J., Collins M. D. 1991; A phylogenetic analysis of an atypical leuconostoc: description of Leuconostoc fallax sp. nov. FEMS Microbiol. Lett. 82:55–60
    [Google Scholar]
  18. Martinez-Murcia A. J., Harland N. M., Collins M. D. 1993; Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. J. Appl. Bacteriol. 74:532–541
    [Google Scholar]
  19. Schillinger U., Holzapfel W., Handler O. 1989; Nucleic acid hybridization studies on Leuconostoc and heterofermentative lactobacilli and description of Leuconostoc amelibiosum sp. nov. Syst. Appl. Microbiol. 12:48–55
    [Google Scholar]
  20. Shaw B. G., Harding C. D. 1989; Leuconostoc gelidum sp. nov. and Leuconostoc carnosum sp. nov. from chill-stored meats. Int. J. Syst. Bacteriol. 39:217–223
    [Google Scholar]
  21. Takahashi M., Okada S., Uchimura T., Kozaki M. 1992; Leuconostoc amelibiosum Schillinger, Holzapfel, and Kandler 1989 is a later subjective synonym of Leuconostoc citreum Farrow, Facklam, and Collins 1989. Int. J. Syst. Bacteriol. 42:649–651
    [Google Scholar]
  22. Yang D., Woese C. R. 1989; Phylogenetic structure of the “Leuconostocs”: an interesting case of a rapidly evolving organism. Syst. Appl. Microbiol. 12:145–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-395
Loading
/content/journal/ijsem/10.1099/00207713-45-2-395
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error