1887

Abstract

Two strains of thermophilic photosynthetic bacteria, designated MD-66 (T = type strain) and YI-9, were isolated from bacterial mats in two separate hot springs in Japan. These new isolates were phenotypically similar to in some respects. They were thermophilic filamentous photosynthetic bacteria that grew well at 55°C either anaerobically as photoheterotrophs or aerobically as chemoheterotrophs. They exhibited gliding motility, produced bacteriochlorophylls and , contained chlorosomes, and required thiamine and folic acid as growth factors. However, isolates MD-66 and YI-9 had the ability to rapidly form mat-like dense aggregates of filaments, an ability which has not been observed in any strain. Carbon source utilization tests revealed that unlike , the new isolates did not utilize acetate, citrate, ethanol, or glycylglycine. An analysis of the carotenoid components revealed that isolates MD-66 and YI-9 contained mainly γ-carotene and OH-γ-carotene glucoside fatty acid esters. These isolates also contained only trace amounts of β-carotene, which is a major carotenoid component (28.4% of the total carotenoids) in . The results of DNA hybridization studies suggested that the new strains were genetically distinct from (levels of similarity, 9 to 18%), and 16S rRNA sequence comparisons showed that strain MD-66 was related to at a similarity level of 92.8%. On the basis of our data, we propose that a new species should be created for our new isolates; the name of this new species is , and the type strain is strain MD-66 (= DSM 9485).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-676
1995-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-676.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-676&mimeType=html&fmt=ahah

References

  1. Cardoso J. N., Watts C. D., Maxwell J. R., Goldfellow R., Eglinton G., Golubic S. 1978; A biogeochemical study of the Abu Dhabi algal mats: a simplified ecosystem. Chem. Geol 23:273–291
    [Google Scholar]
  2. Cohen Y. 1984; The Solar Lake cyanobacterial mats: strategies of photosyn-thetic life under sulfide. 23–38 Cohen Y., Castenholz R. W., Halvorson H. O. Microbial mat: stromatolites Alan R. Liss, Inc; New York:
    [Google Scholar]
  3. D'Amelio E. D., Cohen Y., Des Marais D. J. 1989; Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. 97–113 Cohen Y., Rosenberg E. Microbial mats: physiological ecology of benthic microbial communities American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  4. Dubinina G. A., Gorlenko V. M. 1975; New filamentous photosynthetic green bacteria containing gas vacuoles. Microbiology (Engl. Transl. Mikro-biologiya) 44:452–458
    [Google Scholar]
  5. Ezaki T., Dejsirilert S., Yamamoto H., Takeuchi N., Yabuuchi E. 1988; Simple and rapid genetic identification of Legionella species with photobi-otin-labeled DNA. J. Gen. Appl. Microbiol 34:191–199
    [Google Scholar]
  6. Fuller R. C., Redlinger T. E. 1985; Light and oxygen regulation of the development of the photosynthetic apparatus in Chloroflexus . 155–162 Steinbeck K. E., Bonitz S., Arntzen C. J., Bogorad L. Molecular biology of the photosynthetic apparatus Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  7. Giovannoni S. J., Revsbech N. P., Ward D. M., Castenholz R. W. 1987; Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch. Microbiol 147:80–87
    [Google Scholar]
  8. Gorlenko V. M. 1976; Characteristics of filamentous phototrophic bacteria from freshwater lakes. Microbiology (Engl. Transl. Mikrobiologiya) 44:682–684
    [Google Scholar]
  9. Gorlenko V. M., Pivovarova T. A. 1977; On the belonging of bluegreen alga Oscillatoria coerulescens Gicklhorn, 1921 to a new genus of chlorobacteria Oscillochloris nov. gen. Izv. Akad. Nauk SSSR Ser. Biol 3:396–409
    [Google Scholar]
  10. Halfen L. N., Pierson B. K., Francis G. W. 1972; Carotenoids of a gliding organism containing bacteriochlorophylls. Arch. Microbiol 82:240–246
    [Google Scholar]
  11. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995; Isolation of Chloroflexus aurantiacus and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure. J. Gen. Appl. Microbiol 41:119–130
    [Google Scholar]
  12. Hiraishi A. 1992; Direct automated sequencing of 16S rRNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett. Appl. Microbiol 15:210–213
    [Google Scholar]
  13. Hiraishi A., Hoshino Y., Satoh T. 1991; Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus geratinosus-like” group. Arch. Microbiol 155:330–336
    [Google Scholar]
  14. Hiraishi A., Shin Y. K., Ueda Y., Sugiyama J. 1994; Automated sequencing of PCR-amplified 16S rRNA on ‘Hydrolink’ gels. J. Microbiol. Methods 19:145–154
    [Google Scholar]
  15. Kellenberger E., Ryter A., Sechand J. 1958; Electron microscopic study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol 4:671–678
    [Google Scholar]
  16. Keppen O. I., Baulina O. I., Kondratieva E. N. 1994; Oscillochloris trichoides neotype strain DG-6. Photosynth. Res 41:29–33
    [Google Scholar]
  17. Kushida H. 1980; An improved embedding method using ERL 4206 and Quetol 653. J. Electron Microsc 29:193–194
    [Google Scholar]
  18. Luft J. H. 1964; Electron microscopy of cell extraneous coat as revealed by ruthenium red staining. J. Cell Biol 23:54A
    [Google Scholar]
  19. Mack E. E., Pierson B. K. 1988; Preliminary characterization of temperate marine member of the Chloroflexaceae. 237–241 Olson J. M., Ormerod J. G., Amesz J., Stackebrandt E., Trüper H. G. Green photosynthetic bacteria Plenum Publishing Corp; New York:
    [Google Scholar]
  20. Madigan M. T. 1976; Studies on the physiological ecology of Chloroflexus aurantiacus a filamentous photosynthetic bacterium. Ph.D. thesis University of Wisconsin; Madison:
    [Google Scholar]
  21. Madigan M. T., Peterson S. R., Brock T. D. 1974; Nutritional studies on Chloroflexus a filamentous photosynthetic, gliding bacterium. Arch. Microbiol 100:97–103
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  23. Oyaizu H., Devrunner-Vossbrinck B., Mandelko L., Studier J. A., Woese C. R. 1987; The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst. Appl. Microbiol 9:47–53
    [Google Scholar]
  24. Pfennig N. 1989; Multicellular filamentous green bacteria. 1697–1707 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey's manual of systematic bacteriology 3 Williams & Wilkins; Baltimore:
    [Google Scholar]
  25. Pierson B. K., Castenholz R. W. 1971; Bacteriochlorophylls in gliding filamentous prokaryotes from hot springs. Nature London: 22325–27
    [Google Scholar]
  26. Pierson B. K., Castenholz R. W. 1974; A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus gen. and sp. nov. Arch. Microbiol 100:5–24
    [Google Scholar]
  27. Pierson B. K., Castenholz R. W. Taxonomy and physiology of filamentous anoxygenic phototrophs. Blankenship R. E., Madigan M. T., Bauer C. E. Anoxygenic photosynthetic bacteria, in press Kluwer; Dordrecht, The Netherlands:
    [Google Scholar]
  28. Pierson B. K., Giovannoni S. J., Castenholz R. W. 1984; Physiological ecology of a gliding bacterium containing bacteriochlorophyll a . Appl. Environ. Microbiol 47:576–584
    [Google Scholar]
  29. Pierson B. K., Giovannoni S. J., Stahl D. A., Castenholz R. W. 1985; Heliothrix oregonensis gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a . Arch. Microbiol 142:164–167
    [Google Scholar]
  30. Pierson B. K., Valdez D., Larsen M., Morgan E., Mack E. E. 1994; Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynth. Res 41:35–52
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbour joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  32. Schmidt K. 1980; A comparative study on the composition of chlorosomes (chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch. Microbiol 124:21–31
    [Google Scholar]
  33. Stolz J. F. 1983; Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Res 20:479–492
    [Google Scholar]
  34. Stolz J. F. 1984; Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. II. Transmission electron microscopy as a diagnostic tool in studying microbial community in situ . 23–38 Cohen Y., Castenholz R. W., Halvorson H. O. Microbial mat: stromatolites Alan R. Liss, Inc; New York:
    [Google Scholar]
  35. Takaichi S., Shimada K. 1992; Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213:374–385
    [Google Scholar]
  36. Trüper H. G. 1976; Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous, phototrophic “green” bacteria. Int. J. Syst. Bacteriol 26:74–75
    [Google Scholar]
  37. Venable J. H., Coggeshell R. 1965; A simplified lead citrate stain for use in electron microscopy. J. Cell Biol 25:407–408
    [Google Scholar]
  38. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-676
Loading
/content/journal/ijsem/10.1099/00207713-45-4-676
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error