1887

Abstract

A novel extremely halophilic archaeon was isolated from the Dead Sea. This isolate is rod shaped and, like , requires a relatively low level of sodium ions for growth and a very high level of magnesium; optimal growth occurs in the presence of 0.6 to 1.0 M Mg. The new strain resembles members of the group in many physiological properties. However, the polar lipid composition of this organism is characteristic of representatives of the genus ; a sulfated diglycosyl diether is present, and the glycerol diether analog of phosphatidylglycerosulfate is absent. The G+C content of the DNA is 70 mol%. We found that on the basis of 16S rRNA sequence data our new isolate occupies a position intermediate between the position of the group and the position of the genus and is sufficiently different from the previously described members of the to justify classification in a new species and a new genus. We propose the name gen. nov., sp. nov. for this organism; the type strain is strain DSM 9297.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-747
1995-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-747.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-747&mimeType=html&fmt=ahah

References

  1. Bottger E. C. 1989; Rapid determination of bacteria] ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Mi-crobiol Lett 65:171–176
    [Google Scholar]
  2. Chaga C., Porath J., Illeni T. 1993; Isolation and purification of amy-loglucosidase from Halobacterium sodomense . Biomed. Chromatogr 7:256–261
    [Google Scholar]
  3. Cohen S., Oren A., Shilo M. 1983; The divalent cation requirement of Dead Sea halobacteria. Arch. Microbiol 136:184–190
    [Google Scholar]
  4. Devereux R., He S.-H., Doyle C. L., Orkland S., Stahl D. A., J. LeGall, Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylo-genetic definition of a family. J. Bacteriol 172:3609–3619
    [Google Scholar]
  5. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J. Bacteriol 70:484–185
    [Google Scholar]
  6. Felsenstein J. 1989; PHYLIP—phytogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees based on mutation distance as estimated from cytochrome c sequences is of general applicability. Science 155:279–284
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. 1981; Manual of methods for general bacteriology. American Society for Microbiology Washington: D.C;
    [Google Scholar]
  9. Grant W. D., Larsen H. 1990; Extremely halophilic archaebacteria, order Halobacteriales ord. nov. 2216–2233 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore:
    [Google Scholar]
  10. Gupta R., Lanter J. M., Woese C. R. 1983; Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science 221:656–659
    [Google Scholar]
  11. Hartmann R., Sickinger H.-D., Oesterhelt D. 1980; Anaerobic growth of halobacteria. Proc. Natl. Acad. SciUSA 77:3821–3825
    [Google Scholar]
  12. Higgins D. G., Bleasby A. J., Fuchs R. 1992; Clustal V: improved software for multiple sequence alignment. Comput. Appl. Biosci 8:189–191
    [Google Scholar]
  13. Juez G., Rodriguez-Valera F., Ventosa A., Kushner D. J. 1986; Halo-arcula hispanica spec. nov. and Haloferax gibbonsii spec, nov., two new species of extremely halophilic archaebacteria. Syst. Appl. Microbiol 8:75–79
    [Google Scholar]
  14. Jukes T. H., Cantor R. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  15. Kamekura M., Seno Y. 1992; Nucleotide sequences of 16S rRNA encoding genes from halophilic archaea Halococcus morrhuae NRC 16008 and Haloferax mediterranei ATCC 33500. Nucleic Acids Res 20:3517
    [Google Scholar]
  16. Kamekura M., Seno Y. 1993; Partial sequence of the gene for a serine protease from a halophilic archaeum Haloferax mediterranei R4, and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea. Experientia 49:503–513
    [Google Scholar]
  17. Kates M. 1972 Techniques in lipidology Elsevier/North Holland; New York:
    [Google Scholar]
  18. Kushwaha S. C., Kates M., Juez G., Rodriguez-Valera F., Kushner D. J. 1982; Polar lipids of an extremely halophilic bacterial strain (R-4) isolated from salt ponds in Spain. Biochim. Biophys. Acta 711:19–25
    [Google Scholar]
  19. Larsen N., Olsen G. J., Maidanek B. L., McCaughey M. J., Overbeck R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21: Suppl 3021–3023
    [Google Scholar]
  20. Leffers H., Garrett R. A. 1984; The nucleotide sequence of the 16S ribosomal RNA gene of the archaebacterium Halococcus morrhuae. EMBO J 3:1613–1619
    [Google Scholar]
  21. Lillo J. G., Rodriguez-Valera F. 1990; Effects of culture conditions on poly(p-hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol 56:2517–2521
    [Google Scholar]
  22. Lodwick D., Ross H. N. M., Walker J. A., Almond J. W., Grant W. D. 1991; Nucleotide sequence of the 16S ribosomal RNA gene from the haloal-kaliphilic archaeon (archaebacterium) Natronobaclerium magadii, and the phylogeny of halobacteria. Syst. Appl. Microbiol 14:352–357
    [Google Scholar]
  23. Mankin A. S., Kagramanova V. K., Teterina N. L., Rubtsov P. M., Belova E. N., Kopylov A. M., Baratova L. A., Bogdanov A. A. 1985; The nucleotide sequence of the gene coding for the 16S rRNA from the archaebacterium Halobacterium halobium. Gene 37:181–189
    [Google Scholar]
  24. McGenity T. J., Grant W. D. 1993; The haloalkaliphilic archaeon (archaebacterium) Natronococcus occultus represents a distinct lineage within the Halobacteriales, most closely related to the other haloalkaliphilic lineage (Natronobaclerium). Syst. Appl. Microbiol 16:239–243
    [Google Scholar]
  25. McGenity T. J., Grant W. D. Submitted for publication
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  27. Mullakhanbhai M. F., Larsen H. 1975; Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol 104:207–214
    [Google Scholar]
  28. Mylvaganam S., Dennis P. P. 1992; Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130:399–410
    [Google Scholar]
  29. Oren A. 1983; Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol 33:381–386
    [Google Scholar]
  30. Oren A. 1983; A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Curr. Microbiol 8:225–230
    [Google Scholar]
  31. Oren A. 1986; Relationships of extremely halophilic bacteria towards divalent cations. 52–58 Megusar F., Gantar M. Perspectives in microbial ecology. Slovene Society for Microbiology Ljubljana, Slovenia:
    [Google Scholar]
  32. Oren A. 1988; The microbial ecology of the Dead Sea. 193–229 Marshall K. C. Advances in microbial ecology 10 Plenum Publishing Co; New York:
    [Google Scholar]
  33. Oren A. 1990; Starch counteracts the inhibitory action of Bacto-peptone and bile salts in media for the growth of halobacteria. Can. J. Microbiol 36:299–301
    [Google Scholar]
  34. Oren A. 1993; The Dead Sea—alive again. Experientia 49:518–522
    [Google Scholar]
  35. Oren A. 1994; Enzyme diversity in halophilic archaea. Microbiol. Soc. Es-panola Microbiol 10:217–228
    [Google Scholar]
  36. Oren A., Ginzburg M., Ginzburg B. Z., Hochstein L. I., Volcani B. I. 1990; Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int. J. Syst. Bacteriol 40:209–210
    [Google Scholar]
  37. Oren A., Gurevich P. 1993; Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol. Ecol 12:249–256
    [Google Scholar]
  38. Rodriguez-Valera F., Juez G., Kushner D. J. 1983; Halobacterium mediterranei spec, nov., a new carbohydrate-utilising extreme halophile. Syst. Appl. Microbiol 4:369–381
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular cloning: a laboratory manual. , 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  40. Tindall B. J. 1992; The family Halobacteriaceae . 768–808 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes. A handbook of bacteria: ecophysiology, isolation, identification, applications, 2nd. 1 Springer-Verlag; New York:
    [Google Scholar]
  41. Tindall B. J., Tomlinson G. A., Hochstein L. I. 1989; Transfer of Halobacterium denitrificans (Tomlinson, Jahnke, and Hochstein) to the genus Haloferax as Haloferax denitrificans comb. nov. Int. J. Syst. Bacteriol 39:359–360
    [Google Scholar]
  42. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol 8:89–99
    [Google Scholar]
  43. Trincone A., Nicolaus B., Lama L., De Rosa M., Gambacorta A., Grant W. D. 1990; The glycolipid of Halobacterium sodomense. J. Gen. Microbiol 136:2327–2331
    [Google Scholar]
  44. Trincone A., Trivellone E., Nicolaus B., Lama L., Pagnotta E., Grant W. D., Gambacorta A. 1993; The glycolipid of Halobacterium trapanicum. Bio-chim. Biophys. Acta 1210:35–40
    [Google Scholar]
  45. Yang D., Kaine B. P., Woese C. R. 1985; The phylogeny of archaebac-teria. Syst. Appl. Microbiol 6:251–256
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-747
Loading
/content/journal/ijsem/10.1099/00207713-45-4-747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error