1887

Abstract

Segmented filamentous bacteria (SFB) are nonpathogenic bacteria that are commonly found attached to the intestinal walls of many animals. Until now, these bacteria have not been cultured in vitro. Recently, a 16S rRNA sequence analysis revealed that SFB isolated from mice represent a distinct subline within the subphylum of the gram-positive bacteria. Since SFB isolated from mice, rats, and chickens are known to be host specific, we investigated the phylogenetic relationships among SFB obtained from these three hosts. Total DNAs from the intestinal floras of chickens and rats were used as templates for PCR amplification of 16S rRNA genes. PCR products were cloned and screened by a dot blot hybridization procedure to identify homologous sequences that cross-reacted with mouse SFB-specific oligonucleotide probes. A phylogenetic analysis of these 16S ribosomal DNA sequences revealed that SFB isolated from these three hosts form a natural group, which is peripherally related to the genus sensu stricto (group I ). The SFB obtained from chickens, rats, and mice had closely related, albeit different, 16S rRNA gene sequences. The observed levels of 16S rRNA sequence divergence, ca. 1.5 to 3%, together with host specificity, suggest that SFB isolated from mice, rats, and chickens represent different species and that coevolution of the SFB and their hosts occurred. “ Arthromitus” is proposed as the provisional generic name for this group of organisms.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-780
1995-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-780.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-780&mimeType=html&fmt=ahah

References

  1. Allen P. C. 1992; Comparative study of long segmented filamentous organisms in chickens and mice. Lab. Anim. Sci. 42:542–547
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olsen R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919–1925
    [Google Scholar]
  3. Brosius J., Palmer J. L., Kennedy H. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc. Natl. Acad. Sci.USA 75:4801–4805
    [Google Scholar]
  4. Chase D. G., Erlandsen S. L. 1976; Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. J. Bacteriol 127:572–583
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies D. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  7. Felsenstein J. 1989; PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  8. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  9. Click B., Holbrook K. A., Olah I., Perkins W. D., Stinson R. 1978; A scanning electron microscope study of the caecal tonsil: the identification of a bacterial attachment to the villi of the caecal tonsil and the possible presence of lymphatics in the caecal tonsil. Poult. Sci. 57:1408–1416
    [Google Scholar]
  10. Klaasen H. L. B. M., Koopman J. P., Poelma F. G. J., Beynen A. C. 1992; Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 88:165–180
    [Google Scholar]
  11. Klaasen H. L. B. M., Koopman J. P., van den Brink M. E., Bakker M. H., Poelma F. G. J., Beynen A. C. 1993; Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab. Anim. 27:141–150
    [Google Scholar]
  12. Klaasen H. L. B. M., Koopman J. P., van den Brink M. E., van Wezel H. P. N., Beynen A. C. 1991; Mono-association of mice with non-cultivable, intestinal, segmented, filamentous bacteria. Arch. Microbiol. 156:148–151
    [Google Scholar]
  13. Koopman J. P., Kennis H. M., Hectors M. P. C., Lankhorst A., Stadhouders A. M., de Boer H. 1984; Reciprocal ‘normalization’ of intestinal parameters by indigenous intestinal microflora of the rat and mouse. Z. Versuchstierkd. 26:289–295
    [Google Scholar]
  14. Leidy J. 1849; On the existence of entophyta in healthy animals, as a natural condition. Proc. Natl. Acad. Sci.Phila. 4:225–233
    [Google Scholar]
  15. Leidy J. 1881; The parasites of termites. J. Acad. Nat. Sci. Phila. 8:425–447
    [Google Scholar]
  16. Margulis L., Olendzenski L., Afzelius B. A. 1990; Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus. . Symbiosis 8:95–116
    [Google Scholar]
  17. Murray R. G. E., Stackebrandt E. 1995; Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int. J. Syst. Bacteriol. 45:186–187
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1990; Molecular cloning: a laboratory manual,. , 2. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  19. Snel J., Blok H. J., Kengen H. M. P., Ludwig W., Poelma F. G. J., Koopman J. P., Akkermans A. D. L. 1994; Phylogenetic characterization of Clostridium related segmented filamentous bacteria in mice based on 16S ribosomal RNA analysis. Syst. Appl. Microbiol. 17:172–179
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  21. Tannock G. W., Miller J. R., Savage D. C. 1984; Host specificity of filamentous, segmented microorganisms adherent to the small bowel epithelium in mice and rats. Appl. Environ. Microbiol. 47:441–442
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-780
Loading
/content/journal/ijsem/10.1099/00207713-45-4-780
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error