1887

Abstract

A new extremely halophilic chemoorganotrophic bacterium (strain H200 [T = type strain]) was isolated from the hypersaline sediments of Retba Lake in Senegal. This organism was a sluggishly motile, rod-shaped, non-spore-forming, gram-negative, obligate anaerobe that grew optimally at 40°C in the presence of 180 to 200 g of NaCl per liter. The DNA base composition was 32 mol% guanine plus cytosine. The fermentation products from glucose were ethanol, acetate, H, and CO. Yeast extract was required for growth. The fermentable substrates included -fructose, galactose, -xylose, cellobiose, lactose, maltose, sucrose, starch, -mannitol, glycerol, and Casamino Acids. On the basis of the results of a 16S rRNA sequence analysis, strain H200 was found to be related to species. The 16S rRNA sequence of strain H200 differed from the sequences of the three previously described species, and strain H200 also differed from these organisms in its NaCl range for growth (60 to 340 g/liter); strain H200 grew in the presence of the highest NaCl concentration recorded for any halophilic anaerobic organism, including the three previously described species. We propose that strain H200 (= DSM 10165) belongs to a new species,

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-790
1995-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-790.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-790&mimeType=html&fmt=ahah

References

  1. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter strains: towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23–31
    [Google Scholar]
  2. Bhupathiraju V. K., Oren A., Sharma P. K., Tanner R. S., Woese C. R., McInerney M. J. 1994; Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44:565–572
    [Google Scholar]
  3. Brenner D. J. 1978; Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog. Clin. Pathol. 7:71–117
    [Google Scholar]
  4. Brenner D. J., McWhorter A. C., Leete-Knudson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  5. Cayol J.-L., Ollivier B., Lawson Anani Soh A., Fardeau M.-L., Ageron E., , Grimont P. A. D., Prensier G., Guezennec J., Magot M., Garcia J.-L. 1994; Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. . Int. J. Syst. Bacteriol. 44:805–811
    [Google Scholar]
  6. Cayol J.-L., Ollivier B., Patel B. K. C., Prensier G., Guezennec J., Garcia J.-L. 1994; Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44:534–540
    [Google Scholar]
  7. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  8. Felsentein J. 1993; PHYLIP (phylogenetic inference package), version 3.51c. Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  9. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  10. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol. 36:117–132
    [Google Scholar]
  11. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136:194–198
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–32 Munro H. N. Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 1993; MEGA: molecular evolutionary genetic analysis, version 1.0. The Pennsylvania State University; University Park:
    [Google Scholar]
  14. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21: Suppl 3021–3023
    [Google Scholar]
  15. Liaw H., Mah R. A. 1992; Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl. Environ. Microbiol. 58:260–266
    [Google Scholar]
  16. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  17. Lowe S. E., Jain M. K., Zeikus J. G. 1993; Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509
    [Google Scholar]
  18. Meshbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  19. Ollivier B., Caumette P., Garcia J.-L., Mah R. A. 1994; Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58:27–38
    [Google Scholar]
  20. Ollivier B., Hatchikian C., Prensier G., Guezennec J., Garcia J.-L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41:74–81
    [Google Scholar]
  21. Oren A. 1992; The genera Haloanaerobium, Halobacteroides, and Sporoha-lobacter, . 1893–1900 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes, 2. 2 Springer Verlag; New York:
    [Google Scholar]
  22. Oren A. 1993; Availability, uptake and turnover of glycerol in hypersaline environments FEMS Microbiol. Ecol. 12:15–23
    [Google Scholar]
  23. Oren A., Paster B. J., Woese C. R. 1984; Haloanaerobiaceae: a new family of moderately halophilic obligatory anaerobic bacteria. Syst. Appl. Microbiol. 5:71–80
    [Google Scholar]
  24. Oren A., Weisburg W. G., Kessel M., Woese C. R. 1984; Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. Appl. Microbiol. 5:58–70
    [Google Scholar]
  25. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  26. Rengpipat S., Langworthy T. A., Zeikus J. G. 1988; Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environments. Syst. Appl. Microbiol. 11:28–35
    [Google Scholar]
  27. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208–212
    [Google Scholar]
  28. Simankova M. V., Chernych N. A., Osipov G. A., Zavarzin G. A. 1992; Halocella cellulolytica gen. nov. spec. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst. Appl. Microbiol. 16:385–389
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  30. Tsai C. R., Garcia J.-L., Patel B. K. C., Cayol J.-L., Baresi L., Mah R. A. 1995; Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake. Int. J. Syst. Bacteriol. 45:301–307
    [Google Scholar]
  31. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 13:161–165
    [Google Scholar]
  32. Zeikus J. G., Hegge P. W., Thompson T. E., Phelps T. J., Lang-worthy T. A. 1983; Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9:225–234
    [Google Scholar]
  33. Zhilina T. N., Miroshnikova L. V., Osipov G. A., Zavarzin G. A. 1991; Halobacteroides lacunaris sp. nov., a new saccharolytic, anaerobic, extremely halophilic organism from the lagoon-like hypersaline Lake Chokrak. Microbiology (Engl. Transl. Mikrobiologiya) 60:714–724
    [Google Scholar]
  34. Zhilina T. N., Zavarzin G. A. 1990; A new extremely halophilic homoacetogen bacterium, Acetohalobium arabaticum gen. nov., sp. nov. Dokl. Akad. Nauk SSSR 311:745–747 In Russian
    [Google Scholar]
  35. Zhilina T. N., Zavarzin G. A., Bulygina E. S., Kevbrin V. V., Osipov G. A., Chumakov K. M. 1991; Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst. Appl. Microbiol. 15:275–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-790
Loading
/content/journal/ijsem/10.1099/00207713-45-4-790
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error