1887

Abstract

Newly isolated strains were characterized. In addition, the fatty acid compositions and quinone systems of gram-negative, yellow-pigmented, hydrogen-oxidizing bacteria belonging to the genera , and and related species were studied. strains are nitrogen-fixing organisms that have a Q-10 ubiquinone system; the cellular fatty acids of these organisms include high levels of C acid, and their hydroxy fatty acids include high levels of 3-OH C acid. strains are polarly flagellated organisms that have a Q-8 ubiquinone system. These bacteria can be divided into two groups on the basis of cellular fatty acid and hydroxy fatty acid compositions. strains are peritrichously flagellated, non-nitrogen-fixing organisms that have a Q-8 ubiquinone system; the cellular fatty acids of these strains include high levels of C, C and C acids, and their hydroxy fatty acids include 3-OH C and 2-OH C acids. , and strains can be clearly distinguished from each other on the basis of their quinone systems and cellular fatty acid compositions.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-863
1995-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-863.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-863&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonymy of Alcaligenes uquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol 39:462–466
    [Google Scholar]
  2. Aragno M., Schlegel H. G. 1991; The mesophilic, hydrogen-oxidizing (knallgas) bacteria. 344–384 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on biology of bacteria, 2nd. 1 Springer Verlag; New York:
    [Google Scholar]
  3. Auling G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas, Alcaligenes and Paracoccus. Int. J. Syst. Bacteriol 30:123–128
    [Google Scholar]
  4. Auling G., Reh M., Lee C. M., Schlegel H. G. 1978; Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonas flava and other yellow-pigmented, gram-negative, hydrogen-oxidizing species. Int. J. Syst. Bacteriol 28:82–95
    [Google Scholar]
  5. Barksdale L., Laneelle M.-A., Pollice M. C., Asselineau J., Welby M., Norgard M. W. 1979; Biological and chemical basis for the reclassification of Microbacterium flavum Orla-Jensen as Corynebacterium fiavescens nom. nov. Int. J. Syst. Bacteriol 29:222–233
    [Google Scholar]
  6. Baumgarten J., Reh M., Schlegel H. G. 1974; Taxonomic studies on some gram-positive coryneform hydrogen bacteria. Arch. Microbiol 100:207–217
    [Google Scholar]
  7. Biswas C. J., Thiele O. W. 1983; Ubiquinones (coenzyme Q) in hydrogen oxidizing bacteria. Syst. Appl. Microbiol 4:181–183
    [Google Scholar]
  8. Collins-Thompson D. L., Sorhaug T., Witter L. D., Ordal Z. J. 1972; Taxonomic consideration of Microbacterium lacticum, Microbacterium flavum, and Microbacterium thermosphactum. Int. J. Syst. Bacteril 22:65–72
    [Google Scholar]
  9. Davis D. H., Stainer R. Y., Doudoroff M. 1970; Taxonomic studies on some gram negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol 70:1–13
    [Google Scholar]
  10. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. 1986; Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol 36:405–414
    [Google Scholar]
  11. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 33:487–509
    [Google Scholar]
  12. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol 35:443–453
    [Google Scholar]
  13. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid-ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol 39:35–49
    [Google Scholar]
  14. Doetsch R. N., Pelczar M. J. Jr 1948; The microbacteria. I. Morphological and physiological characteristics. J. Bacteriol 56:37–49
    [Google Scholar]
  15. Hertzberg S., Borch G., Liaaen-Jensen S. 1976; Bacterial carotenoids. L. Absolute configuration of zeaxanthin dirhamnoside. Arch. Microbiol 110:95–99
    [Google Scholar]
  16. Hollander R., Vobis G. 1979; The association of Mycobacterium flavum 301 with gram-negative bacteria: ultrastructural and biochemical evidence. Antonie van Leeuwenhoek J. Microbiol. Serol 45:605–611
    [Google Scholar]
  17. Holmes B., Owen R. J., Evans A., Malnick H., Willcox W. R. 1977; Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int. J. Syst. Bacteriol 27:133–146
    [Google Scholar]
  18. Jenni B., Aragno M. 1987; Xanthobacter agilis sp. nov., a motile, dinitrogen-fixing, hydrogen-oxidizing bacterium. Syst. Appl. Microbiol 9:254–257
    [Google Scholar]
  19. Kawasumi T., Igarashi Y., Kodama T., Minoda Y. 1984; Hydrogenobacter thermophilus gen. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol 34:5–10
    [Google Scholar]
  20. Kersten D. K. 1964; Behavior of hydrocarbon-oxidizing mycobacteria toward various carbon sources. Mikrobiologiya 33:31–37
    [Google Scholar]
  21. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919,936AL. 361–373 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  22. Malik K. A., Claus D. 1979; Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int. J. Syst. Bacteriol 29:283–287
    [Google Scholar]
  23. Orla-Jensen S. 1919 The lactic acid bacteria Host; Copenhagen:
    [Google Scholar]
  24. Reding H. K., Croes G. L. M., Dijkhuizen L., Wiegel J. 1992; Emendation of Xanthobacter flavus as a motile species. Int. J. Syst. Bacteriol 42:309–311
    [Google Scholar]
  25. Tamaoka J., Ha D., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1959 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol 37:52–59
    [Google Scholar]
  26. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1992; Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int. J. Syst. Bacteriol 42:84–92
    [Google Scholar]
  27. Urakami T., Ito-Yoshida C., Araki H., Kijima T., Suzuki K., Komagata K. 1994; Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int. J. Syst. Bacteriol 44:235–245
    [Google Scholar]
  28. Urakami T., Komagata K. 1981; Electrophoretic comparison of enzymes in gram negative methanol-utilizing bacteria. J. Gen. Appl. Microbiol 27:381–403
    [Google Scholar]
  29. Urakami T., Komagata K. 1986; Occurrence of isoprenoid compounds in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol 32:317–341
    [Google Scholar]
  30. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J. Gen. Appl. Microbiol 33:135–165
    [Google Scholar]
  31. Urakami T., Tamaoka J., Komagata K. 1985; DNA base composition and DNA-DNA homologies of methanol-utilizing bacteria. J. Gen. Appl. Microbiol 31:243–253
    [Google Scholar]
  32. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int. J. Syst. Bacteriol 39:116–121
    [Google Scholar]
  33. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. 1977; Micromorphology of gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch. Microbiol 114:101–110
    [Google Scholar]
  34. Weeks O. B. 1974; Genus Flavobacterium Bergey et al. 1923,97. 357–364 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  35. Wiegel J. 1991; The genus Xanthobacter. 2365–2383 Balows A., Truper H. G., Dworkin M., Harder W., Scheifer K. H. The prokaryotes. A handbook on biology of bacteria, 2nd. 3 Springer Verlag; New York:
    [Google Scholar]
  36. Wiegel J., Mayer F. 1978; Isolation of lipopolysaccharides and the effect of polymyxin B on the outer membrane of Corynebacterium autotrophicum. Arch. Microbiol 118:67–69
    [Google Scholar]
  37. Wiegel J., Schlegel H. S. 1984; Genus Xanthobacter Wiegel, Wilke, Baumgarten, Opitz and Schlegel 1978,573AL. 325–333 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  38. Wiegel J., Wilke D., Baumgarten J., Opitz R., Schlegel H. S. 1978; Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int. J. Syst. Bacteriol 28:573–581
    [Google Scholar]
  39. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol 39:319–333
    [Google Scholar]
  40. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol 41:445–450
    [Google Scholar]
  41. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. 1992; Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol 42:107–119
    [Google Scholar]
  42. Woese C. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  43. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol 34:99–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-863
Loading
/content/journal/ijsem/10.1099/00207713-45-4-863
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error