1887

Abstract

We determined nearly complete 16S rRNA gene sequences for 19 isolates of , three isolates of the blood disease bacterium of bananas, and two isolates of , the cause of Sumatra disease of cloves. The dendrogram produced by comparing all of these sequences revealed that there were two divisions, which corresponded to the results obtained previously in a restriction fragment length polymorphism analysis (D. Cook, E. Barlow, and L. Sequeira. Mol. Plant Microbe Interact. 2:113–121, 1989) and a total 16S ribosomal DNA (rDNA) sequence analysis of four isolates representing four biovars of (X. Li, M. Dorsch. T. Del Dot, L. I. Sly, E. Stackebrandt, and A. C. Hayward, J. Appl. Bacteriol. 74:324–329, 1993). Division 1 comprised biovars 3, 4, and 5 and an aberrant biovar 2 isolate (strain ACH0732), and division 2 included biovars 1, 2, and N2, the blood disease bacterium, and Specific nucleotides at positions 458 to 460 (UUC) and 474 (A) characterized division 2, whereas in division 1 the nucleotides at these positions were ACU and U, respectively. However, strain ACH0732 had a U at position 458, as did division 2 isolates, and G instead of U at position 474. Division 2 consisted of two subdivisions; one subdivision contained two isolates that originated from Indonesia, strains, and blood disease bacterium strains, and the other subdivision contained all of the other division 2 isolates. Within division 1, the level of 16S rDNA sequence similarity ranged from 99.8 to 100%, and within division 2, the levels of 16S rDNA sequence similarity ranged from 99.1 to 100%. The division 1 isolates exhibited an average level of 16S rDNA sequence similarity to division 2 isolates of 99.3% (range, 99.1 to 99.5%). The occurrence of consistent polymorphisms in the 16S rDNA sequences of strains, in particular unique 16S rDNA sequence differences in aberrant biovar 2 isolate ACH0732, and the occurrence of the Indonesian subdivision of division 2 suggest that this group is a rapidly evolving (tachytelic) group.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-10
1996-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-10.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-10&mimeType=html&fmt=ahah

References

  1. Baharuddin B., Rudolph K., Niepold F. 1994; Production of monospecific antiserum against the blood disease affecting banana and plantain. Phytopathology 84:570–575
    [Google Scholar]
  2. Boucher C. A., Van Gijsegem F., Barberis P., Arlat A. M., Zischek C. 1987; Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J. Bacteriol 169:5626–5632
    [Google Scholar]
  3. Cook D., Barlow E., Sequeira L. 1989; Genetic diversity of Pseudomonas solanacearum,. detection of restriction fragment length polymorphisms with DNA probes that specify virulence and hypersensitive response. Mol. Plant Microbe Intraction 2:113–121
    [Google Scholar]
  4. Cook D., Barlow E., Sequeira L. 1991 DNA probes as tools for study of host-pathogen evolution: the example of Pseudomonas solanacearum,. 103–108 Hennecke H., Verma D. P. S.ed Advances in molecular genetics of plant-microbe interactions 1 Kluwer; Dordrecht, The Netherlands:
    [Google Scholar]
  5. Eden-Green S. J. 1994 Diversity of Pseudomonas solanacearum and related bacteria in South East Asia: new direction for moko disease. 25–34 Hayward A. C., Hartman G. L.ed Bacterial wilt: the disease and its causative organism, Pseudomonas solanacearum CAB International, Wallingford; United Kingdom:
    [Google Scholar]
  6. Eden-Green S. J., Sastraatmadja H. 1990; Blood disease present in Java. FAO Plant Prot. Bull 38:49–50
    [Google Scholar]
  7. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  8. Gillis M., Tran Van V., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T., Fernandez M. P. 1995; Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for Nz-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol 45:274–289
    [Google Scholar]
  9. Gray M. W., Sankoff D., Cedergren R. J. 1984; On the evolutionary descent of organisms and organelles: a global phylogeny based on highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5852
    [Google Scholar]
  10. Hayward A. C. 1964; Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol 27:265–277
    [Google Scholar]
  11. Hayward A. C. 1975; Biotypes of Pseudomonas solanacearum in Australia. Australas. Plant Pathol. Soc. Newsl 4:9–11
    [Google Scholar]
  12. Hayward A. C. 1991; Biology and epidemiology of bacterial wilt caused by Pseudomonas solanaceamm. Annu. Rev. PhytopathoL 29:65–87
    [Google Scholar]
  13. Hayward A. C. 1994; Pseudomonads infecting Musa spp. and clove (Syzygium aromaticum) in South East Asia: phylogeny and nomenclature of the causative agents and significance in plant quarantine. Australas. Plant Pathol 23:163–169
    [Google Scholar]
  14. Hayward A. C. 1994 Systematics and phylogeny of Pseudomonas solanaceamm and related bacteria. 123–136 Hayward A. C., Hartman G. L.ed Bacterial wilt: the disease and its causative organism, Pseudomonas solanacearum CAB International; Wallingford, United Kingdom:
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Kelman A. 1954; The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695
    [Google Scholar]
  17. Lane D. J. 1991 16S/23S rRNA sequencing. 115–147 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley and Sons; Brisbane, Australia:
    [Google Scholar]
  18. Li X., Dorsch M., Del Dot T., Sly L. I., Stackebrandt E., Hayward A. C. 1993; Phylogenetic studies of the rRNA group II pseudomonads based on 16S rRNA gene sequences. J. Appl. Bacteriol 74:324–329
    [Google Scholar]
  19. Li X., Hayward A. C. 1994; Bacterial whole cell protein profiles of the rRNA group II pseudomonads. J. Appl. Bacteriol 77:308–318
    [Google Scholar]
  20. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  22. Martin C., French E. R., Nydegger U. 1982; Strains of Pseudomonas solanacearum affecting Solanaceae in the Americas. Plant Dis 66:458–460
    [Google Scholar]
  23. Palleroni N. J., Doudoroff M. 1971; Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J. Bacteriol 107:690–696
    [Google Scholar]
  24. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol 23:333–339
    [Google Scholar]
  25. Roberts S. J., Eden-Green S. J., Jones P., Ambler D. J. 1990; Pseudomonas syzygii sp. nov., the cause of Sumatra disease of cloves. Syst. Appl. Microbiol 13:34–43
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  27. Seal S. E., Jackson L. A., Daniels M. J. 1992; Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanaceamm by polymerase chain reaction amplification. Appl. Environ. Microbiol 58:3759–3761
    [Google Scholar]
  28. Seal S. E., Jackson L. A., Young J. P. W., Daniels M. J. 1993; Differentiation of Pseudomonas solanacearum, Pseudomonas syzygii, Pseudomonas pickettii and the blood disease bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J. Gen. Microbiol 139:1587–1594
    [Google Scholar]
  29. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces iw駿如-specific oligonucleotide probe. J. Gen. Microbiol 136:37–43
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J, Syst. Bacteriol 44:846–849
    [Google Scholar]
  31. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol 42:281–295
    [Google Scholar]
  32. Stover R. H., Espinoza A. 1992; Blood disease of banana in Sulawesi. Fruits 47:611–613
    [Google Scholar]
  33. Swofford J. 1993 PAUP: phylogenetic analysis using parsimony (version 3.1.1). Illinois Natural History Survey; Champaign:
    [Google Scholar]
  34. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  35. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev 47:621–669
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-10
Loading
/content/journal/ijsem/10.1099/00207713-46-1-10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error