1887

Abstract

During a study of microbial communities in athalassic bodies of water, three new species within the genus were described. These are alkaliphilic sp. nov. Z-7491 (DSM 8900) and halophilic sp. nov. Z-7692 (DSM 8902) from the soda-depositing Lake Magadi in Central Africa and haloalkaliphilic sp. nov. Z-7591 (DSM 8901) from Lake Khatyn, Central Asia. These mesophilic spirochetes develop at pHs of >9 as anaerobic saccharolytic dissipotrophs. The DNA base compositions (moles percent G+C) of the strains were as follows: -7491, 57.1; -7692, 56.1; and -7591, 49.2. The optimum growth parameters (temperature, pH, and NaCl concentration [percent, wt/vol], respectively) were as follows: for -7491, 35°C, 9.2, and 5 to 7%; for -7692, 35°C, 9.3, and 5 to 7%; and for -7591, 35°C, 8.9, and 3 to 6%. The products of glucose fermentation were acetate, hydrogen, ethanol, and lactate, in different proportions, for and ; for , they were acetate, ethanol, and lactate. is strictly anaerobic, while and are rather aerotolerant. All three species group within the radiation of the majority of the species of the genus . Studies of the genes encoding 16S rRNA indicate a possible fanning out of the phylogenetic tree of spirochetes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-305
1996-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-305.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-305&mimeType=html&fmt=ahah

References

  1. Aksenova E. Y., Rainey F. A., Janssen P. H., Zavarzin G. A., Morgan H. W. 1992; Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int. J. Syst. Bacteriol 42:175–177
    [Google Scholar]
  2. Aksenova E. Y., Svetlichny V. A., Zavarzin G. A. 1990; Spirochaeta thermophila sp. nov.: a thermophilic marine spirochete isolated from a littoral hydrotherm of Shiashkotan Island. Microbiology 59:735–741
    [Google Scholar]
  3. Canale-Parola E. 1992 Free-living saccharolytic spirochetes: the genus Spirochaeta,. 3524–3536 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes: a handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications IV Springer-Verlag Inc.; New York:
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  5. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Eugster H. P. 1980 Lake Magadi, Kenya, and its precursors. 195–232 Nissenbaum A.ed Hypersaline brines and evaporitic environments Developments in sedimentology. Elsevier Scientific Publishing Co.; Amsterdam:
    [Google Scholar]
  7. Franzmann P. D., Dobson S. J. 1992; Cell wall-less, free-living spirochetes in Antarctica. FEMS Microbiol. Lett 97:289–292
    [Google Scholar]
  8. Franzmann P. D., Rohde M. 1992; Characteristics of a novel, anaerobic, mycoplasma-like bacterium from Ace Lake, Antarctica. Antarctic Sci 4:155–162
    [Google Scholar]
  9. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial DNA from renaturation rates. Eur. J. Biochem 12:143–153
    [Google Scholar]
  10. Greenberg E. P., Canale-Parola E. 1976; Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. Arch. Microbiol 110:185–194
    [Google Scholar]
  11. Hansson R., Phillips J. 1981 Chemical composition. 328–364 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  12. Harwood C. S., Canale-Parola E. 1983; Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int. J. Syst. Bacteriol 33:573–579
    [Google Scholar]
  13. Harwood C. S., Canale-Parola E. 1984; Ecology of spirochetes. Annu. Rev. Microbiol 38:161–192
    [Google Scholar]
  14. Hespell R. B., Canale-Parola E. 1970; Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Mikrobiol 74:1–18
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  17. Owen R. J., Hili L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  18. Paster B. J., Dewhirst F. E., Weisbe咯 W. G., Tardoff L. A., Fraser G. J., Hespell R. B., Stanton T. B., Zablen L., Mandelco L., Woese C. R. 1991; Phylogenetic analysis of the spirochetes. J. Bacteriol 173:6101–6109
    [Google Scholar]
  19. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Thermophilic anaerobic spirochetes in New Zealand hot springs. FEMS Microbiol. Lett 26:101–106
    [Google Scholar]
  20. Pohlschroeder M., Leschine S. B., Canale-Parola E. 1994; Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch. Microbiol 161:17–24
    [Google Scholar]
  21. Rainey F. A., Dorsch M., Morgan H. W., Stackebrahdt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  22. Rainey F. A., Janssen P. H., Wild D. J. C. 1991; Isolation and characterization of an obligately anaerobic, polysaccharolytic, extremely thermophilic member of the genus Spirochaeta. Arch. Microbiol 155:396–401
    [Google Scholar]
  23. Svetlichny V. A., Svetlichnaya T. P. 1988; Dictyoglomus turgidus sp. nov., a new extreme thermophilic eubacterium isolated from hot springs of the Uzon volcano crater. Microbiology 57:435–441
    [Google Scholar]
  24. Tindall B. J. 1988 Procaryotic life in the alkaline, saline athalassic environment. 31–67 Rodriguez-Valera F.ed Halophilic bacteria 1 CRC Press; Boca Raton, Fla:
    [Google Scholar]
  25. Whitman W. B., Ankwanda E., Wolfe R. S. 1982; Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol 149:852–863
    [Google Scholar]
  26. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem 238:2882–2886
    [Google Scholar]
  27. Zavarzin G. A. 1989; Microbial community in the past and the present. Microbiol. Zhurn. (Kiev) 51:3–14 In Russian.
    [Google Scholar]
  28. Zavarzin G. A. 1993; Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Microbiology 62:473–479
    [Google Scholar]
  29. Zavarzin G. A. 1993 An ecological approach to the systematics of procaryotes. 555–558 Guerrero R., Pedros-Alio C.ed Trends in microbial ecology Spanish Society for Microbiology; Barcelona:
    [Google Scholar]
  30. Zhilina T. N., Zavarzin G. A. 1994; Alkaliphilic anaerobic community at pH 10. Curr. Microbiol 29:109–112
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-305
Loading
/content/journal/ijsem/10.1099/00207713-46-1-305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error