1887

Abstract

ATCC 51520 (T = type strain) was isolated from sewage sludge samples enriched with elemental sulfur. The cells of this organism were gram negative, rod shaped, motile, facultatively autotrophic, and strictly aerobic and contained polyphosphate inclusions and polyhedral bodies. During growth on thiosulfate, the following intermediates were produced: tetrathionate, trithionate, and sulfate, and the pH was lowered from neutrality to around 2.5. Autotrophic growth was observed at pH values between 4.3 and 7.8 and at temperatures of 34 to 65°C; optimum growth occurred at pH 5.2 to 5.6 and 50 to 52.5°C. Ubiquinone Q8 was present in the respiratory chain. The DNA contained 61 ± 1 mol% G+C. No denitrification was observed under autotrophic and heterotrophic conditions. The cells produced a glycocalyx during growth in the presence of S. As determined by a 16S rRNA gene sequence analysis, is a distinct species that belongs to the beta subdivision of the and is closely related phylogenetically to . The GenBank accession number for the complete 16S rRNA gene sequence of is U27839.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-409
1996-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-409.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-409&mimeType=html&fmt=ahah

References

  1. B匂i A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal. Biochem 162:18–23
    [Google Scholar]
  2. Blais J.-F., Tyagi R. D., Meunier N., Auclair J. C. 1994; The production of extracellular appendages during bacterial colonization of elemental sulphur. Process Biochem 29:475–482
    [Google Scholar]
  3. Bousquet J., Simon L., Lalonde M. 1990; DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can. J. For. Res 20:254–257
    [Google Scholar]
  4. Bryant R. D., Costerton J. W., Laishley E. J. 1984; The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. Can. J. Microbiol 30:81–90
    [Google Scholar]
  5. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thioparus gen. et sp. nov., a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can. J. Microbiol 22:1509–1517
    [Google Scholar]
  6. Clesceri L. S., Greenberg A. E., Trussell R. R. 1989 Standard methods for the examination of water and wastewater. , 17th. American Public Health Association; Washington, D.C:
    [Google Scholar]
  7. Devereux J. P., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  8. DiSpirito A. A., Lho W. H.-T., Tuovinen O. H. 1983; A novel method for the isolation of bacterial quinones and its application to appraise the ubiquinone composition of Thiobacillus ferrooxidans. Arch. Microbiol 135:77–80
    [Google Scholar]
  9. Distel D. L., Wood A. P. 1992; Characterization of the gill symbiont of Tyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J. Bacteriol 174:6317–6320
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  11. Goebel B. M., Stackebrandt E. 1994; Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol 60:1614–1621
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1967 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  13. Katayama Y., Hiraishi A., Kuraishi H. 1995; Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141:1469–1477
    [Google Scholar]
  14. Katayama-Fujimura Y., Kawashima I., Tsuzaki N., Kuraishi H. 1984; Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedins. Int. J. Syst. Bacteriol 34:139–144
    [Google Scholar]
  15. Katayama-Fujimura Y., Kuraishi H. 1983; Emendation of Thiobacillus perometabolis London and Rittenberg 1967. Int. J. Syst. Bacteriol 33:650–651
    [Google Scholar]
  16. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal. Chem 41:898–901
    [Google Scholar]
  17. Kelly D. P., Harrison A. P. 1984 Genus Thiobacillus,. 1842–1858 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  19. Kuenen J. G., Robertson L. A., Tuovinen O. H. 1992 The genera Thiobacillus, Thiomicrospora, and Thiosphaera,. 2638–2657 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 1993 MEGA: molecular evolutionary genetics analysis, version 1.0 The Pennsylvania State University; University Park:
    [Google Scholar]
  21. Lane D. J., Hansson A. P. Jr., Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulfurand iron-oxidizing eubacteria. J. Bacteriol 174:268–278
    [Google Scholar]
  22. Lin C. C., Casida L. E. Jr. 1984; Gelrite as a gelling agent in media for growth of thermophilic microorganisms. Appl. Environ. Microbiol 47:427–429
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  24. Shooner F., Tyagi R. D. Microbial ecology of simultaneous thermophilic microbial leaching and digestion of sewage sludge. Can. J. Microbiol in press
    [Google Scholar]
  25. Shooner F., Tyagi R. D. Thermophilic microbial leaching of heavy metals from municipal sludge using indigenous sulfur-oxidizing microbiota. Appl. Microbiol. BiotechnoL in press
    [Google Scholar]
  26. Stackebrandt E., M・ Goebel B. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  27. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the purple bacteria and their relatives. Int. J. Syst. Bacteriol 38:321–325
    [Google Scholar]
  28. Sutherland I. W. 1972; Bacterial exopolysaccharides. Adv. Microb. Physiol 8:143–213
    [Google Scholar]
  29. Swofford D. L. 1993 PAUP-phylogenetic analysis using parsimony, version 3.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  30. Ulitzur S. 1972; Rapid determination of DNA base composition by ultraviolet spectroscopy. Biochim. Biophys. Acta 272:1–11
    [Google Scholar]
  31. Ursing J. B., Rossello-Mora R. A., Garcia-Valdes E., Lalucat J. 1995; Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int. J. Syst. Bacteriol 45:604
    [Google Scholar]
  32. Williams R. A. D., Hoare D. S. 1972; Physiology of a new facultatively autotrophic thermophilic thiobacillus. J. Gen. Microbiol 70:555–566
    [Google Scholar]
  33. Wood A. P., Kelly D. P. 1985; Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int. J. Syst. Bacteriol 35:434–437
    [Google Scholar]
  34. Wood A. P.j, Kelly D. P. 1986; Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch. Microbiol 144:71–77
    [Google Scholar]
  35. Wood A. P., Kelly D. P. 1988; Isolation and physiological characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch. Microbiol 149:339–343
    [Google Scholar]
  36. Wood A. P., Kelly D. P. 1993; Reclassification of Thiobacillus thyasins as Thiomicrospora thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch. Microbiol 159:45–47
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-409
Loading
/content/journal/ijsem/10.1099/00207713-46-2-409
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error