1887

Abstract

A new aerobic, obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium, , was isolated from a hot spring on Sao Miguel Island in the Azores. The cells of this organism are gram negative, nonsporulating, and rod shaped. Filament formation appears to occur as a response to nonoptimal growth condition. Growth occurs at 63 to 86°C, and the optimum temperature is 76 to 78°C. The optimum pH range for growth is 7.0 to 7.5. The G+C content of the DNA of our isolate is 39.7 mol%. This isolate uses thiosulfate, tetrathionate, hydrogen sulfide, and elemental sulfur as energy sources. Of particular interest are the absence of Calvin cycle enzymes and the initial appearance of sulfide during the lag phase of growth of aerobic cultures grown on elemental sulfur. The subsequent formation of thiosulfate is followed by oxidation of the thiosulfate to sulfate. differs from the only other species that has been described, , by having higher optimum and maximum growth temperatures, by being an obligate chemolithoautotroph, and by its close but separate position on a 16S rRNA sequence-based phylogenetic tree. Our isolate has been deposited in the American Type Culture Collection as strain ATCC 51754 (T = type strain).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-422
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-422.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-422&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Ingason A., Kristjansson J. K. 1986; Growth of thermophilic, obligately autotrophic hydrogen-oxidizing bacteria on thiosulfate. Lett. Appl. Microbiol 2:21–24
    [Google Scholar]
  2. Aragno M. 1992 Aerobic, chemolithoautotrophic, thermophilic bacteria. 77–103 Kristjansson J. K.ed Thermophilic bacteria CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  3. Bazylinski D. A., Wirsen C. O., Jannasch H. W. 1989; Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl. Environ. Microbiol 55:2832–2836
    [Google Scholar]
  4. Be曲 T., Berzcy M., Aragno M. 1993; Elemental sulfur production during mixotrophic growth on hydrogen and thiosulfate of thermophilic hydrogen-oxidizing bacteria. Curr. Microbiol 27:349–353
    [Google Scholar]
  5. Beh M., Strauss G., Huber R., Stetter K. O., Fuchs G. 1993; Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol 160:306–311
    [Google Scholar]
  6. Belkin S., Wirsen C. O., Jannasch H. W. 1985; Biological and abiological sulfur reduction at high temperatures. Appl. Environ. Microbiol 49:1057–1061
    [Google Scholar]
  7. Beudeker R. F., Cannon G. C., Kuenen J. G., Shively J. M. 1980; Relations between d-ribulose-1,5-biphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch. Microbiol 124:185–189
    [Google Scholar]
  8. Biebl IL, Pfennig N. 1978; Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol 117:9–16
    [Google Scholar]
  9. Blumentals L L, Iton M., Olson G. J., Kelly R. M. 1990; Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl. Environ. Microbiol 56:1255–1262
    [Google Scholar]
  10. Bonjour F., Aragno M. 1986; Growth of thermophilic obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source. FEMS Microbiol. Lett 35:11–15
    [Google Scholar]
  11. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem 72:248–254
    [Google Scholar]
  12. Brannan D. K., Caldwell D. E. 1980; Thermothnx thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl. Environ. Microbiol 40:211–216
    [Google Scholar]
  13. Brannan D. K., Caldwell D. E. 1983; Growth kinetics and yield coefficients of the extreme thermophile Thermothrix thiopara in continuous culture. Appl. Environ. Microbiol 45:169–173
    [Google Scholar]
  14. Brannan D. K., Caldwell D. E. 1986; Ecology and metabolism of Thermothrix thiopara. Adv. Appl. Microbiol 31:233–270
    [Google Scholar]
  15. Brierly J. A., Norris P. R., Kelly D. P., LeRoux N. W. 1978; Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus. Eur. J. Appl. Microbiol. Biotechnol 5:291–299
    [Google Scholar]
  16. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thioparus gen. et sp. nov., a facultatively anaerobic facultative chemolithoautotroph living at neutral pH and high temperature. Can. J. Microbiol 22:1509–1517
    [Google Scholar]
  17. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr 14:454–458
    [Google Scholar]
  18. Connaris H., Cowan D., Ruffet M., Sharp R. J. 1991; Preservation of the hyperthermophile Pyrococcus furiosus. Lett. AppL Microbiol 13:25–27
    [Google Scholar]
  19. Dietrich G., Weiss N., Winter J. 1988; Acetothermus paucivorans, gen. nov., sp. nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst. Appl. Microbiol 10:174–179
    [Google Scholar]
  20. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  21. Golovacheva R. S., Karavaiko G. I. 1978; A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Mikrobiologiya 47:658–663
    [Google Scholar]
  22. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol 33:1225–1228
    [Google Scholar]
  23. Hudson J. A., Morgan H. W., DanieL R. M. 1987; Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int. J. Syst. Bacteriol 37:431–436
    [Google Scholar]
  24. Ishii M., Igarashi Y., Kodama T. 1989; Purification and characterization of ATP:citrate lyase from Hydrogenobacter thermophilus TK-6. J. Bacteriol 171:1788–1792
    [Google Scholar]
  25. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal. Chem 41:898–901
    [Google Scholar]
  26. Kletzin A. 1989; Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J. Bacteriol 171:1638–1643
    [Google Scholar]
  27. Kletzin A. 1994; Sulfur oxidation and reduction in Archaea: sulfur oxygenase-reductase and hydrogenases from the extremely thermophilic and facultatively anaerobic archaeon Desulfurolobus ambivalens. Syst. Appl. Microbiol 16:534–543
    [Google Scholar]
  28. Klimmek O., Kroger A., Steudel R., Holdt G. 1991; Growth of Wolinella succinogenes with polysulfide as terminal acceptor of phosphorylative electron transport. Arch. Microbiol 155:177–182
    [Google Scholar]
  29. Langworthy T. A. 1982; Lipids of Thermoplasma. Methods Enzymol 88:396–406
    [Google Scholar]
  30. Langworthy T. A., Holzer G., Zeikus J. G., Tornebene T. G. 1983; Isoand anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst. AppL Microbiol 4:1–17
    [Google Scholar]
  31. Larson N., Olsen G. J., Maida B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21:SuppL3021–3023
    [Google Scholar]
  32. LeRoux N. W., Wakerley D. S., Hunt S. D. 1977; Thermophilic thiobacillus-type bacteria from Icelandic thermal areas. J. Gen. Microbiol 100:197–201
    [Google Scholar]
  33. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  34. Meritt K, Poynor A., Brannan D. 1991 Absence of ribulose-1,5- biphosphate carboxylase in Thermothrix thiopara suggests a C4 carbon dioxide fixation pathway, abstr. 1–51. 199 Abstracts of the 91st General Meeting of the American Society for Microbiology 1991 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  35. Mohagheghi A., Grohmann K., Himmel M., Leighton L., Updergraff D. M. 1986; Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol 36:435–443
    [Google Scholar]
  36. Neefs J.-M., de Peer V., Hendriks L., De Wachter R. 1990; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:Suppl.2237–2317
    [Google Scholar]
  37. Nelson D. C., Jannasch H. W. 1983; Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol 136:262–269
    [Google Scholar]
  38. Odintsova E. V., Wood A. P., Kelly D. P. 1993; Chemolithoautotrophic growth of Thiothrix ramosa. Arch. Microbiol 160:152–157
    [Google Scholar]
  39. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  40. Reysenbach A.-L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Environ. Microbiol 60:2113–2119
    [Google Scholar]
  41. Schauder R., Muller E. 1993; Polysulfide as a possible substrate for sulfur-reducing bacteria. Arch. Microbiol 160:377–382
    [Google Scholar]
  42. Segerer A., Stetter K. O., Klink F. 1985; Two contrary modes of chemolithotrophy in the same archaebacterium. Nature (London) 313:787–789
    [Google Scholar]
  43. Shiba H., Kawasumi T., Igarashi Y., Kodoma T., Minoda Y. 1985; The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol 142:198–203
    [Google Scholar]
  44. Shima S., Suzuki K.-I. 1993; Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int. J. Syst. Bacteriol 43:703–708
    [Google Scholar]
  45. Shiina S., Yanagi M., Saiki H. 1994; The phylogenetic position of Hydrogenobacter acidophilus based on 16S rRNA sequence analysis. FEMS Microbiol. Lett 119:119–122
    [Google Scholar]
  46. Stackebrandt E., Murray R. G. E., Triiper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol 38:321–325
    [Google Scholar]
  47. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol. Rev 75:117–124
    [Google Scholar]
  48. Tabatabai M. A. 1974; A rapid method for determination of sulfate in water samples. Environ. Lett 7:237–243
    [Google Scholar]
  49. Triiper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J. Microbiol. Serol 30:225–238
    [Google Scholar]
  50. Tuttle J. H., Holmes P. E., Jannasch H. W. 1977; Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microb. Ecol 4:9–25
    [Google Scholar]
  51. Vartanyan N. S., Pivovarova T. A., Tsaplina L. A., Lysenko A. M., Karavaiko G. I. 1988; New thermoacidophilic bacterium of the genus Sulfobacillus. Mikrobiologiya 57:268–273
    [Google Scholar]
  52. Waterbury J. B., Stanier R. Y. 1978; Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev 42:2–44
    [Google Scholar]
  53. Williams R. A. D., Hoare D. S. 1972; Physiology of a new facultatively autotrophic thermophilic thiobacillus. J. Gen. Microbiol 70:555–566
    [Google Scholar]
  54. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
  55. Zillig W., Yeats S., Holz I., Bock A., Gropp F., Rettenberger M., Lutz S. 1985; Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature (London) 313:789–791
    [Google Scholar]
  56. Zillig W., Yeats S., Holz I., Bock A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. Microbiol 8:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-422
Loading
/content/journal/ijsem/10.1099/00207713-46-2-422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error